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Abstract Öz 

Purpose: This study aimed to evaluate the predictability 
of survival in patients with glioblastoma using a machine 
learning (ML) model developed with tissue analysis 
features obtained through preoperative post-contrast T1-
weighted images(T1WI). 
Materials and Methods: The radiomic features of 
tumors were obtained from postcontrast T1WI of 60 
glioblastoma patients. Radiomic properties, density, shape, 
and textural properties obtained from six matrices were 
included in the analysis. The patients' three- and six-month 
survival rates were recorded. Five different ML algorithms 
were applied to create predictive models [random forest, 
neural network, linear discriminant analysis(LDA), 
stochastic gradient descent (SGD), and support vector 
machine(SMV)].  
Results: The mean survival time of the patients was 295.4 
days, and the median value was 211.5 (17-1357) days. 
Among the models developed for three- and six-month 
survival prediction, the highest success was obtained from 
the LDA algorithm, in which the AUC values were 
calculated as 0.88 and 0.78, respectively. 
Conclusion: Using ML techniques, the success of 
predicting imaging-based patient survival was very high. 
With the development and widespread adoption of these 
techniques, ML models will be useful in deciding on 
treatment according to survival prediction in glioblastoma. 

Amaç: Bu çalışma ameliyat öncesi kontrastlı T1 ağırlıklı 
görüntülerden(T1AG) elde edilen doku analizi(radyomiks) 
özellikleriyle geliştirilen makine öğrenimi(MÖ) modeli 
kullanılarak glioblastomlu hastalarda sağkalımın 
öngörülebilirliğini değerlendirmeyi amaçlamaktadır. 
Gereç ve Yöntem: Tümörlerin radyomiks özellikleri 60 
glioblastoma hastasının kontrastlı T1AG’den elde edildi. 
Altı matristen elde edilen radyomik özellikler, yoğunluk, 
şekil ve dokusal özellikler analize dahil edilmiştir. 
Hastaların üç ve altı aylık sağkalım oranları kaydedildi. 
Tahmine dayalı modeller [random forest, neural network, 
linear discriminant analysis(LDA), stochastic gradient 
descent (SGD), support vector machine(SMV)] 
oluşturmak için beş farklı MÖ algoritması uygulandı.  
Bulgular: Hastaların ortalama sağkalım süresi 295,4 gün, 
medyan değeri 211,5 (17-1357) gündü. Üç ve altı aylık 
sağkalım tahmini için geliştirilen modellerden en yüksek 
başarı, EAA değerlerinin sırasıyla 0,88 ve 0,78 olarak 
hesaplandığı LDA algoritmasından elde edilmiştir. 
Sonuç: MÖ tekniklerini kullanarak, görüntülemeye dayalı 
hasta sağkalımını tahmin etme başarısı çok yüksekti. Bu 
tekniklerin gelişmesi ve yaygınlaşması ile MÖ modelleri, 
glioblastomda sağkalım tahminine göre tedaviye karar 
vermede faydalı olacaktır. 
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INTRODUCTION 

Glioblastoma is the most common primary malignant 
brain tumor in adults with an estimated annual 
incidence of 0.6 -3.7/100,000 cases per year, varying 
from one country to another1. Chemoradiotherapy is 
applied after surgery in the treatment of glioblastoma. 
Patients die within weeks or months after these 
treatments, the median life span varies between 11 
and 15 months, although some patients are known to 
live for more than 36 months2,3. 

Magnetic resonance imaging (MRI) plays a critical 
role in the initial diagnosis of glioblastoma, evaluating 
the treatment response, and is increasingly a powerful 
non-invasive predictive tool. Many studies have 
identified relationships between MRI features and 
survival in patients with high-grade glioma4,5. 
Radiomics has been proposed to evaluate and 
investigate the biology, genetics, and molecular 
properties of tumoral tissue using medical images. 
Radiomics term to a process that extracts highly 
efficient quantitative features from radiographic 
images and constructs predictive models for 
classifying image characteristics into genomic 
properties and clinical consequences6. Nowadays, 
several radiology models based on radiomics, such as 
metastasis prediction, survival prediction and 
classification of molecular and genetic properties, 
have been proposed7-9. It should be kept in mind that 
according to the radiomics hypothesis, imaging 
heterogeneity may be an output of underlying genetic 
heterogeneity10. Also, recently, machine learning 
models based on texture analysis have been 
developed. Machine learning consists of a large class 
of statistical analysis algorithms developed iteratively 
in response to training data to create models for 
independent predictions11. Rapidly growing 
computer technology is used in machine learning in 
object detection, placement, and classification in 
many digital images. The use of machine learning in 
the field of radiology is also increasing. Recently, 
machine learning models have been used to predict 
survival or distant organ metastasis in prostate and 
breast cancers based on MRI and in non-small-cell 
lung carcinoma based on computed 
tomography8,12,13. 

In glioblastoma, conventional imaging methods have 
little chance of success in predicting survival. 
Previous studies in the area performed survival 
prediction based on texture features obtained from 
perfusion mapping images14. Although these 

procedures are academically successful, they are 
challenging to apply to huge patient series and 
multicenter research. In this respect, there is a need 
for evaluations to be made over a single sequence that 
can be reached more easily and quickly. Thus, this 
study aimed to investigate the predictability of 
especially the short-term survival of patients using a 
machine learning model developed with tissue 
analysis features obtained from preoperative 
contrast-enhanced T1-weighted images. 

MATERIALS AND METHODS 

The local institutional review board approved this 
retrospective study (decision/protocol number 
2020/722, Adana Teaching and Research Hospital 
Ethics Committee). The written informed consent 
was obtained from the participants enrolled in this 
study. Before the radiological examination, written 
informed consent was received from each patient 
(parents or guardians of patients aged <18 years). 

 

Figure 1. Patient selection and exclusion criteria 

Patient selection 

Patients histopathologically diagnosed with 
glioblastoma between January 1, 2016, and October 
30, 2019, were retrospectively screened from the 
records of Adana Teaching and Research Hospital. 
Patients who were diagnosed with WHO grade 4 
glioblastoma based on the pathology report, 
underwent MRI before surgery and had at least six 
months between their diagnosis and the time of the 
study were included. Excluded from the study were 
patients with other intracranial diseases (severe 
traumatic brain injury, severe infection and other 
benign/malign brain tumors), those with MRI images 
that contained motion artefacts, those treated before 
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imaging, and those having a glioblastoma grade other 
than grade 4 according to 2016 WHO pathological 
calcification system (Fig 1.). 

MRI acquisition 

Post-contrast 3D T1 images of all patients 
participating in the study were evaluated. The patients 
were scanned using 1.5 T Philips Ingenia (Philips 
Medical Systems, Amsterdam, Netherlands) and GE 
Optima 360 (GE Medical Systems, Milwaukee, Wis) 
devices. Three-dimensional T1-weighted images 
(6.3/3.1; field of view, 240 mm; section thickness, 1 
mm; matrix, 192x192) were acquired after the 
administration of a gadolinium-based contrast agent 
(0.1 mL/kg gadobutrol, Gadovist; Bayer, Toronto, 
Ontario, Canada). The three-dimensional data of 
postcontrast T1-weighted MRI were collected during 
the continuous interval of 90–250 s. 

Texture extraction 

In this study, Lifex (http://www.lifexsoft.org, LITO, 
CEA, Inserm, CNRS, Univ. Paris-Sud, Université 
Paris Saclay) software was used to extract the texture 
properties. Post-contrast 3D T1-weighted images of 
the patients were analyzed. The patients' images were 
evaluated independently by a specialist radiologist 
with four years of experience and a three-year 
radiology assistant who had completed primary 
neuroradiology training. The region of interest (ROI) 
was manually drawn in all planes without including 
vasogenic edema in the contrast-enhanced outer 
boundaries of the tumor. After the ROI delineation, 
texture features were calculated automatically using 
default settings (128 discrete gray levels. All 
fundamental statistical analyses were performed 
using SPSS software version 24.0 (SPSS Inc.), and p-
value of less than 0.05 were considered to indicate 
significant differences. 

A total of 49 texture features were extracted from the 
MRI images, including first-order statics (minValue, 
meanValue, maxValue, and stdValue, histogram 
parameters) and parameters were derived from five 
matrices: gray-level co-occurrence matrix (GLCM), 
shape, gray-level run-length matrix (GLRLM), gray-
level zone length matrix (GLZLM), and 
neighborhood gray-level dependence matrix 
(NGLDM). 

The procedure was implemented twice by a specialist 
radiologist and a radiology resident to provide 
reproducibility of the extraction. The reliability of 

texture features was evaluated with the intraclass 
correlation coefficient. Intraclass correlation 
coefficient cut-off for good reproducibility was 0.80. 
However, for a more accurate evaluation, the 
arithmetic mean of both measurements was taken, 
and this value was used in further analyses. 

Statistical analysis 

A large number of texture property data of 60 
patients had to be processed before entering them in 
the machine learning algorithms. This process was 
carried out in several stages. In the first stage, 
standardization of data was performed, followed by a 
co-linearity analysis (features displaying a strong 
correlation (r>0.8) were removed. Then, the data 
sample was stratified using a 10- fold cross-validation 
technique along with minority oversampling. In the 
last stage, statistically non-significant data were 
eliminated to avoid overcompliance, shorten the time 
required for modeling, and increase accuracy. For this 
purpose, two different feature selection methods, 
namely Gini index and ReliefF algorithms were used. 
According to both algorithms, six common features 
with the highest success were selected. 

The patients were divided into two groups according 
to three-month and six-month survival. Machine 
learning models were created separately for each 
group to predict survival. Machine learning-based 
classifications were performed using the Waikato 
Environment for Knowledge Analysis (WEKA) 
toolkit version 3.8.3. Five different machine-learning 
algorithms for binary classification were evaluated: 
random forest, neural network, stochastic gradient 
descent (SGD) method, linear discriminant analysis 
(LDA), and support vector machine (SMV). Model 
performance was internally validated using a 10-fold 
cross-validation protocol (Fig. 2). Performance 
evaluation was undertaken using the area under the 
curve (AUC) analysis. Accuracy, recall, precision, and 
F-measure (weighted-harmonic mean of precision 
and recall) coefficients were obtained. In addition, 
models were developed to evaluate the overall 
survival prediction success of the models. For this 
purpose, GLCM Entropy-log10, which is the most 
successful parameter used in machine learning 
models, was used. GLCM Entropy-log10 was 
dichotomized based on an optimum cut-off value 
derived from the receiver operating characteristic 
(ROC) analysis. Then, the Kaplan-Meier model was 
constructed based on this value. 
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Figure 2. Overall flowchart of the proposed method. 

Table 1. Success of three-month survival prediction models developed by ML algorithms 

ML 
algorithm 

ACC (%) PREC 
(%) 

RECALL 
(%) 

F score 
(%) 

AUC Confusion Matrix Outcome 

Predict 
mortality 

Predict 
survival 

LDA 95 92 85 0.88 0.887 11 2 died 

96 98 0.97 1 46 survived 

Neural  93.33 85 85 0.85 0.872 11 2 died 

Network 96 96 0.96 2 45 survived 

Random 93.33 85 85 0.85 0.872 11 2 died 

Forest 96 96 0.96 2 45 survived 

 95 92 85 0.88 0.887 11 2 died 

SGD 96 98 0.97 1 46 survived 

 81.67 67 31 0.42 0.633 4 9 died 

SMV 83 96 0.89 2 45 survived 
ML: machine learning, LDA: linear discriminant analysis, SGD: stochastic gradient descent, SMV: support vector machine, Prec: precision, 
ACC: accuracy, AUC: Area Under the Curve 

 

RESULTS 

Sixty patients who met the necessary inclusion criteria 
were evaluated in the study. The mean age of the 
patients included in the study was 53 (5-89) years. All 
the patients underwent appropriate surgical tumor 
resection using the standard treatment protocol after 

diagnosis. Of the patients included in the study, 39 
were male, and 21 were female.  

According to the patients' pathology reports, 12 were 
consistent with IDH mutant type and 48 patients 
with IDH wild type glioblastoma. The mean survival 
time of the patients was 295.4 days, and the median 
value was 211.5 (17-1357) days. There was no 
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significant difference in the mean survival time 
between males and females. 

Among the models developed for the prediction of 
three-month survival, the highest success was 
obtained from the LDA and SGD algorithms. Six 
features were selected according to the Relieff and 
Wrapper algorithms. For the six-month survival 
prediction modeling, the LDA algorithm achieved 
the highest success using the six features chosen 

according to the Relieff and Wrapper algorithms. 
Each model's performance for the three-month and 
six-month survival prediction is presented in Tables 
1 and 2, respectively (including precision, recall, 
accuracy, and AUC). Figure 3 presents the Kaplan-
Meier curve obtained based on the cut-off value 
calculated using the ROC analysis, as well as the log-
rank values, Table 3 shows the Breslow Tarone-Ware 
values, and Table 4 summarizes the median and 
median survival data. 

Table 2. Success of six-month survival prediction models developed by ML algorithms  

ML 
algorithm 

ACC (%) PREC 
(%) 

RECALL 
(%) 

F score 
(%) 

AUC Confusion Matrix  Outcome 

Predict 
mortality 

Predict 
survival 

LDA 83.33 86 72 0.78 0.782 18 7 died 

82 91 0.86 3 32 survived 

Neural  75 73 64 0.68 0.729 16 9 died 

Network 76 83 0.79 6 29 survived 

Random 75 78 56 0.65 0.755 14 11 died 

Forest 74 89 0.80 4 31 survived 

  81.66 85 68 0.76 0.797 17 8 died 

SGD 80 91 0.85 3 32 survived 

  66.67 67 40 0.50 0.629 10 15 died 

SMV 67 86 0.75 5 30 survived 
ML: machine learning, LDA: linear discriminant analysis, SGD: stochastic gradient descent, SMV: support vector machine, Prec: precision, 
ACC: accuracy, AUC: Area Under The Curve 

Table 3. Log-rank, Breslow and Tarone-Ware values according to the overall comparison of GLCM entropy 
log10 

GLCM Entropy Log10 Overall Comparison 

 Chi-Square df Sig. 

Log Rank (Mantel-Cox) 5.067 1 0.024 

Breslow (Generalized Wilcoxon) 8.711 1 0.003 

Tarone-Ware 6.96 1 0.008 
Test of equality of survival distributions for the different levels of GLCM228; GLCM: gray-level co-occurrence matrix 

 

Table 4. Mean and median survival times divided into two groups according to the GLCM entropy log10 values 
of < and > 2.28  

Mean and Median Survival Times 

 Meana Median 

Estimate Std. 
Error 

95% Confidence 
Interval 

Estimate Std. 
Error 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

GLCM entropy 
log10 < 2.28 

590.63 107.89 379.16 802.1 359 94.65 173.48 544.51 

GLCM entropy 
log10 > 2.28 

269.27 44.9 181.25 357.28 157 43.63 71.46 242.53 

Overall 439.68 70.1 302.26 577.09 237 75.71 88.6 385.39 

a. Estimation is limited to the largest survival time if it is censored.; GLCM: gray-level co-occurrence matrix 
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Figure 3. The Kaplan-Meier curve in which the 
survival times are divided into two groups 
according to the GLCM entropy log10 cut-off value. 

DISCUSSION 

It is very difficult to assess the histological grades of 
glial tumors, determine their molecular subtypes, and 
predict patient survival through conventional 
preoperative imaging methods. Therefore, in recent 
years, the development of machine learning models 
based on texture analysis methods has led to the re-
evaluation of many parameters. In neuroradiology, 
machine learning models have started to be used in 
grading glial tumors. Especially in the preoperative 
period, to predict molecular subtype and survival15-18. 
Our study developed a machine learning model for 
predicting survival based on texture analysis data 
obtained from contrasted T1-weighted images 
obtained in the preoperative period. The developed 
algorithms belonged to the LDA, neural network, 
random forest, SGD, and SMV methods. Among 
these methods, LDA provided the model with the 
highest three- and six-month survival estimates in the 
patients' preoperative images (other models 
presented in Tables 1 and 2). The three- and six-
month AUC values were 0.88 and -0.78, respectively, 
and the accuracy values were 95% and 83.3, 
respectively. LDA is a classification method 
developed by Fischer in 1936. Despite being simple, 
it is a model that produces good results in complex 
problems. It is a statistical classifier that combines the 
entered parameters into a distinctive function to 
classify situations in different groups19. Our results 
showed that the LDA-based model had promising 
performance in predicting survival in glioblastoma. 
In the evaluation performed with the conventional 
survival analysis method, we found that GLCM 
entropy alone was very successful in survival 
prediction, especially in the early and medium terms. 
However, when we examined the findings obtained 

with confidence intervals, they fell behind those of 
machine learning models. 

Considering the previous literature, studies have been 
carried out to predict survival in glioblastoma using 
texture-based machine learning models. In a survival 
and subtyping study based on the multiparametric 
images of 134 glioblastoma patients, Macyszyn et al.20 
calculated the AUC of SMV model as 0.79. In 
another survival analysis based on dynamic 
susceptibility contrast-enhanced images in 24 
glioblastoma patients, Lee et al.14 found the AUC as 
0.849. Prasanna et al.21 determined the 
concordance(C) index as 0.67 in random forest 
models in long- and short-term survival prediction in 
65 glioblastoma patients based on radiological 
features obtained from the peritumoral brain 
parenchyma in multi-parametric MRI.In another 
study, Being et al.22 found the C-index as 0.83 for the 
survival prediction based on contrast-enhanced T1, 
T2, and FLAIR images in 115 glioblastoma patients. 
In the current study, the AUC values were calculated 
0.88 and 0.82 for the prediction of three- and six-
month survival. The follow-up period was six months 
in some of the previous studies and 18 months in 
others. Furthermore, no standard algorithm was used 
in those studies. Although the methods and models 
of all these studies differed, the success of machine 
learning models in predicting survival was 
consistently high. 

Some studies focused on identifying factors affecting 
prognosis before treatment in patients with 
glioblastoma22. Resection degree, necrosis grade, 
patient age, and Karnofsky performance status (KPS) 
have been evaluated to estimate the survival times of 
glioblastoma patients23. Among these, especially KPS 
has started to be used as a prognosis criterion in 
recent years24. However, KPS has internal 
inconsistencies, and there are both practitioner- and 
individual-based contradictions25, 26. Therefore, more 
objective and standardized methods are required to 
predict survival before treatment in glioblastoma 
patients, and they should be considered when 
evaluating treatment options. Although glioblastoma 
patients' survival time is concise, all treatment 
methods should be taken into consideration in the 
decision-making phase of treatment options, 
especially for patients with a life expectancy of more 
than six months. 

In our study, we aimed to predict early survival 
specifically. Unfortunately, curative treatment is not 
generally possible with current medical and surgical 
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approach methods in glioblastoma. Therefore, the 
main goal in treatment is to increase the average 
survival and palliation. Thus, the life expectancy of 
patients is critical. When we examined our findings, 
LDA modeling was found to have a much higher 
success in predicting patient survival for three and six 
months than predicting mortality (three months 
recall: 98%, six-month recall: 91%). In this situation 
where life expectancy is critical, these findings were 
very promising in encouraging and directing the 
patient and clinician. 

Although our results are promising, our study has 
some limitations, one of which was the use of CE 3D 
T1-weighted images alone. However, our analysis 
revealed the high prognostic value of this single MRI 
scan contrast. In addition, tumor segmentation was 
performed in a time-consuming and user-dependent 
manner. This underlines the need for automated 
tumor segmentation, which will minimize user bias 
and allow larger-scale studies. Another limitation is 
that the sample size was small, and the study had a 
single-center and retrospective design. In the future, 
large-scale multicenter studies are needed to assess 
the generalization ability of radiomic models fully. 
Due to our study's small sample size, we were unable 
to divide our data into training and test data sets. To 
overcome this problem, 10-fold cross-validation was 
used, thereby providing an unbiased estimate in this 
sample. Nevertheless, further studies in independent 
data sets are required to ensure that our approach can 
be generalized with independent data. Studies with 
study models and results similar to our study are 
available in the literatüre19-21. However, the number 
of studies with successful results based on radiomics 
in many cancer types is increasing day by day. 
Radiomics has become an obligation to demonstrate 
that the features are reproducible in different centers 
as much as success and standardization. 

In this study, the machine learning models developed 
based on the texture analysis of data obtained from 
contrast-enhanced T1-weighted images had very high 
success in predicting three- and six-months survival 
in glioblastoma patients. The addition of 
complementary imaging parameters in future studies 
can further improve survival estimation using 
radiomic analysis. In addition, machine learning 
models to be developed with the independent 
verification of radiological features can help decide 
on an appropriate treatment according to survival 
prediction in patients diagnosed with glioblastoma. 
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