
* Corresponding Author: rotimifolaranmi@gmail.com  

Received: February 03, 2021, Accepted: September 15, 2021 
 

87 

 

e-ISSN:2564-7954 CUSJE 18(2): 087-100 (2021) Research Article 

 

Çankaya University 
 

Journal of Science and Engineering 
 

https://dergipark.org.tr/cankujse 
 

  
 

 

A Fifth-Order Hybrid Block Integrator for Third-Order  

Initial Value Problems 

Rotimi Oluwasegun Folaranmi1* , Abayomi Ayotunde Ayoade2 , Tolulope Latunde3  

 

          1* Department of Mathematics and Computing, Thomas Adewumi University, Kwara State, Nigeria 
          2 Department of Mathematics, University of Lagos, Lagos State, Nigeria 
          3 Department of Mathematics, Federal University Oye-Ekiti, Ekiti State, Nigeria 

 

Keywords  Abstract 

Block Method, 

Chebyshev 

Polynomials, 

Linear Multistep 

Method. 

 

 

The formulation of hybrids block method as integrator of third-order Initial Value 

Problems in Ordinary Differential Equations is our focus in this paper. Chebyshev 

polynomials were used as trial function to develop a hybrid One-step Method 

(HBOSM3) adopting collocation and interpolation technique. The basic properties of 

HBOSM3 were integrated and findings revealed that the method was accurate and 

convergent. One of desirable features of these methods is the production of exact 

solutions at the grid points. 

 

1. Introduction 

This work is concerned with the class of the Problems  

),'',',,()( )1()( −= mm yyyyxfxy    

)()( 00

)( syxy s = 1,,2,1,0 −= ms               (1) 

for the case 3=m . 

The analytical solution of many of such problems does not exist. Thus, the need for formulation of numerical 

schemes to integrate (1) becomes necessary. 

Researchers have reduced higher order of (1) to first order ODEs but with a set back see [1,2,3,4] and the inability 

of the method to utilize additional information associated with a specific ODE such as the oscillatory nature of 

the solution [5] occasioned by the increase dimension of the problem and low order of accuracy of the methods 

employed to solve the system of first-order IVPs of ODEs.    

It has commonly been reported by scholars that implementation of linear multistep methods in  predictor-

corrector mode is very expensive.  

To circumvent the setbacks encounter in predictor-corrector approach, the block methods have been introduced 

to solve IVPs in ODEs. [6,7] first proposed block methods as a means of obtaining stating values for predictor-

corrector algorithms. The block methods however provide the advantage of being self starting, possess uniform 

order and they are obtained from a single continuous formula. Of recent, [8,9,10,11,12,13,14,15] developed 

different numerical methods and considered different trial functions. 

 

Problems arising from ODEs can either be formulated as an IVP or a BVP. However, our concern shall be with 

IVP. Several researchers such as [16,17,18] attempt solving (1) directly using derived LMMs without reduction 

to system of first order ODEs. [6,18] developed new block methods which are self-starting using power series 

and newly constructed orthogonal polynomials as basis function. While [18] used power series as the basis 
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function, [19] employed a newly derived orthogonal polynomials as trial function to develop one step hybrid 

block method for solution of general second order Initial value problem. Despite elegant properties of Chebyshev 

polynomials, it is rare seeing scholars considering it as basis function. 

Thus, in this paper,we propose the development of one-step hybrid block linear multistep method for the solution 

of Initial Value Problems of Third Order Differential Equations with the use of Chebyshev polynomial as basis 

function. 

2. Methodology 

The approximation of analytical solution of problem (1) employing Chebyshev polynomial of the form 
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as basis function on the partition  bxxxxxa kkk == + ............. 110  is considered here. 

The function )(xy  is integrated in the interval [a, b], with a constant step size h, given by
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which is the nth degree Chebyshev polynomial which is valid in the range of definition of (2). 

The Chebyshev polynomials )(xTn satisfied the recurrence relation   
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where )(xtt = ,a function of x , is given by (5). 

The first, second and third derivative of (2) is given by 
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where ),( bax , the san '  are constant, r and s are points of collocation and interpolation respectively. 

Conventionally, we need to interpolate at least three points to be able to approximate the solution of (2) and, for 

this purpose, we proceed by arbitrarily selecting two off-step point,  

vkx + , )1,0(v in ),( 1+kk xx  ensuring that the zero-stability of the main method is guaranteed. 

Thus, equation (2) is interpolated at ikx + , i=0, v and 1 and its third derivative is collocated at ikx +  i=0, v, and 1 

so as to obtain a system of equations. 

In what follows, we shall develop one step methods with three off step points
4

3

2

1
,

4

1
andv = . 
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2.1. Development of the Proposed Method 

 

In this section, the derivation of continuous one-step method with three off-step point is considered. Using (2) 

with 𝑟 = 5 and 𝑠 = 3, we have a polynomial of degree seven as follow;  
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 with third derivative given by  
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 Collocating (10) at ikxx += , 1,
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 lead to a 

system of equations written in matrix form BAX = as: 
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 The values of 7,1,0, =ja j below are obtained using Maple software to solve (11) 
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Substituting the values of )70(  iai into (2), we obtain a continuous scheme in the form  
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 Simplifying (13), we have
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Evaluating (13) with the expressions in (14) at 
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Differentiating (13),  we obtain 
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The second derivatives of continuous functions are given as  
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The additional methods to be coupled with the main methods are obtained by evaluating the first and second 

derivatives of (13) at kx
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Equations ( )19 , ( ) ( )2820   are solved simultaneously to obtain the block method as shown below. 
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3. Basic Properties of the Method 

        3.1.  Order and Error Constant  

Here under, the basic properties of the derived schemes are discussed.  

The implicit schemes (15) and (16) belong to the class of LMM of the form 
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Following [21], the approach adopted in [9,20,3], we define the local truncation error associated with equation 
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Definition 1:  

The LMM (30) is said to be of order p if 02210 ===== +pp CCCCC  . 03 +pC is called the error 
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+  is the principal local truncation error at the point nx  (see Lambert [3] and 

Henrici [21]). 

The approach adopted above to obtain order and error constant can be further simplified as presented below. 

Defining the derived schemes in a generalized form as  
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Where  nqp   and qp, and n  are desired positive real numbers. 

Expanding (32) in Taylor series gives   
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Thus, we have 
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In this way, we obtain the following local truncation errors 
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Thus, with the analysis above the method is of order 5=P . 

 

3.2. Zero Stability 

Definition 2: The LMM (30) is said to be zero-stable if no root of the first characteristic polynomial has modulus 

greater than one, and if every root of modulus one has multiplicity not greater than three. 

All the roots of the derived schemes have been verified to be less than or equal to 1 and 1=Z , simple. 

Region of Absolute Stability 

The region of absolute stability is as shown in Figure 1 below. 

 
        Figure 1. Region of Absolute Stability of the Proposed Scheme 

 

3.3. Consistency 

Definition 3: The LMM (30) is said to be consistent if it is of order 1p and its first and second characteristic 

polynomials defined as 
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j j   (ii) 0)1(')1( ==    and  (iii) )1(!3)1('''  =  

The discrete schemes derived are all of order greater than one and satisfy the conditions (i)-(iii). 

 

4. Numerical Applications 

We consider here the application of the derived schemes to four test problems for the efficiency and accuracy of 

the method implemented as block method. 

 

Problem 1. (A constant coefficient non-homogeneous problem)  

 34610163410'3''2''' 222 ++−−=+−− −− xxexeyyyy xx



Folaranmi et al. CUJSE 18(2): 087-100 (2021) 

 

96 

 

3)0( =y 0)0('')0(' == yy ,  ],0[ bx  

Exact Solution: 3)( 222 +−= − xexxy x
  

Source: [22] 

  

Problem 2. (System of Third Order Non- homogeneous Equations) 

Consider linear system  
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The analytical solution of the problem is given by  
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Source: [23]  

 

Problem 3. Non-linear Blasius Equation (Application Problem) 

 

 

The exact solution does not exist. 

Source: [24] 

 

Problem 4. Non-linear  problem 

1'''2 =yy  

1)0( =y 1)0(' =y 1)0('' =y 1.0=h  
 
 

Source: [2] 

 

The above problem was derived by [25] to investigate the motion of the contact line for a thin oil drop spreading 

on a horizontal surface. 
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4.1. Table of Results for Derived Schemes 

 

Table 1. Comparing the Exact and Approximate Solutions for Problem 1 

S/N Exact Solution HBOSM3 
Error in HBOSM3 

Order 5=p  

0.1 2.99818730753077981860 2.99818730747705733110 111037224875.5 −  

0.2 2.98681280184142557200 2.98681280161700194330 101024423629.2 −  

0.3 2.95939304724846237890 2.95939304672226093300 101026201446.5 −  

0.4 2.91189263425875545460 2.91189263327710326110 101081652194.9 −  

0.5 2.84196986029286058040 2.84196985867073284320 091062212774.1 −  

0.6 2.74842991628839275480 2.74842991380017445720 091048821829.2 −  

0.7 2.63083251233138717370 2.63083250870099794350 091063038923.3 −  

0.8 2.48921377151657946140 2.48921376640688782660 091010969163.5 −  

0.9 2.32389209945948509600 2.32389209246103497220 091099845012.6 −  

1.0 2.13533528323661269190 2.13533527385580657200 091038080612.9 −  

 

 

Table 2a. Comparing the Exact and Approximate Solutions Problem 2 

S/N )(XY  )(XZ  )(XW  )(xy  )(xz  )(xw  

0.1 -3.1231894926 0.5837759655  -15.3156161567  -3.1231894560  0.5837758783  -15.3156161090 

0.2 -4.1798720039 2.8955946767 -18.8192683596  -4.1798719797  2.8955946098  -18.8192683368 

0.3 -5.2907280101  5.1490391846  -22.7376338078  -5.2907279628  5.1490390677  -22.7376337494 

0.4 -6.5671473768  7.5295418360  -27.2927163439  -6.5671472799  7.5295416251  -27.2927161981 

0.5 -8.1153095717 10.2017225511  -32.7093811319  -8.1153095365  10.2017223859  -32.7093811583 

0.6 -10.0394579136 13.3141947486  -39.2223944883  -10.0394578721  13.3141945579  -39.2223945116 

0.7 -12.4447423776  17.0026290626 -47.0835436967  -12.4447425605  17.0026291561  -47.0835442368 

0.8 -15.4400130476 21.3918511265  -56.5694498912  -15.4400134215  21.3918516601  -56.56945068415 

0.9 -19.1409691671  26.5977797475  -67.9907375934  -19.1409702416  26.5977812383  -67.9907399319 

1.0 -23.6741293029  32.7300983533  -81.7033541871 -23.6741307084  32.7300983533  -81.7033568756 

 

Table 2b. Absolute Errors Comparing the Exact and Numerical Solution of HBOSM3 for Problem 2 

x  )()( xyxY −  )()( xzxZ −  )()( xwxW −  

 Order 5=p  Order 5=p  Order 5=p  

0.1 081065973272.3 −  
081071808821.8 −  

081076871627.4 −  

0.2 081041625333.2 −  
081069145923.6 −  

081028771554.2 −  

0.3 081073871817.4 −  
071016903887.1 −  

081084087227.5 −  

0.4 081068805796.9 −  
071010923016.2 −  

071045746882.1 −  

0.5 081052409556.3 −  
071065185369.1 −  

081063339165.2 −  

0.6 081015722789.4 −  
071090594603.1 −  

081033019014.2 −  

0.7 071082932181.1 −  
081034770509.9 −  

071040070027.5 −  

0.8 071073898906.3 −  
071033604181.5 −  

071092936188.7 −  
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0.9 061007452850,1 −  061049079207.1 −  
061033857116.2 −  

1.0 061040552304.1 −  
061035365180.2 −  

061068851230.2 −  

 

Table 3.  Comparing the Solution of the Approximate and the Existing Method for Problem 3 

S/N Exact Solution HBOSM3 Error in HBOSM3  

Order 5=p  

Error in [3]  

Order 6=p  

0.1 0.00499995518745601000  0.00499995833397275076  091014693822.3 −  
081027300000.4 −  

0.2 0.01999865908023810000  0.01999866684107568891  091076083759.7 −  
061020759000.1 −  

0.3 0.04498987410259470000  0.04498987947242828080  091036983358.5 −  
061060719000.8 −  

0.4 0.07995737735167610000  0.07995737798187473660  101030198637.6 −  
051040900400.3 −  

0.5 0.12487004764653700000  0.12487005751675742098  091087022042.9 −  
051074068000.9 −  

0.6 0.17967712636121700000  0.17967714132520461733  081049639876.1 −  
041025711000.2 −  

0.7 0.24430361290038500000  0.24430361709211550733  091019173051.4 −  
041051454700.4 −  

0.8 0.31864597946467400000  0.31864600945693486117  081099922609.2 −  
041008472900.8 −  

0.9 0.40256860621313400000  0.40256862074667307803  081045335391.1 −  
031032622070.1 −  

1.0 0.49590033762933700000  0.49590038304760480831  081054182678.4 −  
03100220546.2 −  

 

 

Table 4.  Comparing the Solution of the Approximate and the Existing Method for Problem 4 

S/N Exact Solution HBOSM3 Error in HBOSM3 

Order 5=p  

Error in [7] 

Order 4=p  

0.2 1.22121001337746352620 1.22121000453347653350 091084398699.8 −  
051040500000.2 −  

0.4 1.48883473296637175650 1.48883477988252287300 091069161511.4 −  
051071670000.7 −  

0.6 1.80736134919720764840 1.80736139771131630540 091085141087.4 −  
061094945000.7 −  

0.8 2.17981922624938085950 2.17981923396911604190 081071973518.7 −  
031034949000.4 −  

1.0 2.60827491835217941000 2.60827486766264780410 071006895316.5 −  
021083199620.1 −  

  

KEY: 

HBOSM3:  HYBRID BLOCK ONE STEP METHOD WITH THREE OFF-STEP POINTS  

 

5.  Discussion of Results 

Problems 1 and 2 are constant coefficient non- homogeneous equations and system of third order non-

homogeneous equations respectively. The results were displayed in Tables 1 and 2 respectively. The absolute 

errors obtained revealed that low errors resulted from the comparison of the solutions obtained from the 

implementation of the derived schemes with the corresponding exact solutions. 

Problem 3 however considered Blassius equation in Thermodynamics, while another non-linear differential 

equation was considered in problem 4. Their exact solutions were not available. Hence, they were generated 

directly using Maple software environment. Tables 3 and 4 presented the solutions of problems 3 and 4 as 

comparison of our developed order 5 HBOSM3 with order 6 method of [24] and order 4 method of [2] 

respectively. The superiority of the method has been established numerically.  
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6. Conclusions 

Initial value problem solver had been developed by interpolation and collocation techniques using Chebyshev 

polynomials as basis function. Four test problems have been considered to show the efficiency and accuracy of 

the method. Tables 1, 2, 3 and 4 display the accuracy and comparison of the numerical results of the HBOSM3 

with the exact solution and existing methods. The method’s desirability and superiority have been established by 

the numerical results. With little extension, the approach adopted in this paper is viable for the solution of higher 

order initial value problems of ordinary differential equations.  
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