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This study presents the application of semi-analytical and numerical solution technique 

to both Volterra and Fredholm integro-differential difference equations by employing 

Differential Transform Method depending on Taylor series expansion and introducing 

the new differential transform theorems with their proofs. To illustrate the computational 

efficiency and the reliability of the method to other common numerical methods in the 

open literature, some examples are carried out it is found that the results are highly 

accurate and reliable. 

 

1. Introduction 

The Differential Transform Method (DTM) is a semi-numerical and analytical method based on Taylor series 

expansion, firstly introduced by Zhou’s studies about electrical circuit analysis [18]. In recent years, numerous 

studies have been realized to extend the application range of this technique to various types of equations such as 

nonlinear integro-differential equations [1], integro-differential equations [2], difference equations [3], 

differential-difference equations [4], fractional differential equations [5], integro-differential equation systems 

[6], fractional integro-differential equations [7], differential equation systems [8], delay differential equations 

[11], and Volterra integral equation [12] expressing engineering problems, physical phenomena, biological 

events, or economy. One of these equations is integro-differential difference equations (IDDEs), which are used 

to model discrete events containing shifted terms in governing integro-differential functions. To solve IDDEs, 

Polynomial based methods such as the Improved Jacobi matrix method [9], Hybrid Euler-Taylor matrix method 

[10], the backward substitution method [13], mono-implicit Runge-Kutta method [14], Legendre polynomials 

[15], Legendre spectral collocation method [16], and Laguerre approach [17] can be employed due to difficulty 

in solving them analytically, which are reduced to a set of algebraic linear equations. Similarly, DTM can be 

employed to solve IDDEs. Therefore, the objective of this study is to extend DTM’s application border to solve 

these types of equations by defining the new theorems.  

 This study is organized as follows. In Section 2, the fundamental theorems and basic definitions used in the 

transformation operations of various type equations such as the differential, difference, delay, pantograph, and 

integral, etc. are given, and new theorems for DTM are introduced to solve the Volterra and Fredholm type 

IDDEs. In Section 3, examples are carried out to demonstrate the application methodology. Also, the comparison 
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with other solution techniques is presented to show the accuracy of the DTM. Ultimately, a brief overview and 

important features of DTM are summarized in Section 4.  

2. Differential Transform Method  

The differential transform of the kth derivative of a function f(x) in a one-dimensional case is defined as follows: 

  ( )
( )

0

1

!

k

k

x x

d f x
F k

k dx
=

 
=  

  
 (1) 

where F(k) is the transformed function of the original function f(x) and the inverse differential transform of the 

F(k) function is defined by 

  ( ) ( ) ( )0

0

k

k

f x x x F k


=

= − . (2) 

Any function expressed by differential, difference, integral equations, or combinations of these can be written in 

the following series expansion form with help of equations (1) and (2)  

  ( )
( ) ( )
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k k

k
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x x d f x
f x
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

=
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 −
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 . (3) 

The following DTM theorems can be deduced from the definitions stated in equations (1) and (2), which are used 

in the fundamental transform operations for the one-variable equations 

Theorem 1. If ( ) ( ) ( )f x g x h x=  , then ( ) ( ) ( )F k G k H k=  . 

Theorem 2. If ( ) ( )f x c g x= , then ( ) ( )F k cG k= , where c ∈ IR.   

Theorem 3. If ( ) nf x x= , then ( ) ( )
1,

0,

k n
F k k n

k n


=
= − = 


. 

Theorem 4. If ( ) ( )sinf x ax b= + , then ( ) sin
! 2

ka
F k k b

k

 
= + 

 
, where a, b ∈ IR. 

Theorem 5. If ( ) ( )cosf x ax b= + , then ( ) cos
! 2

ka
F k k b

k

 
= + 

 
, where a, b ∈ IR. 

Theorem 6. If ( ) ax bf x c += , then ( ) ( )
1

ln
!

b k kF k c a c
k

= , where a, b, c ∈ IR are const. 

Theorem 7. If ( )
( )n

n

d g x
f x

dx
= , then ( )

( )
( )

!

!

k n
F k G k

k

+
= . 

Theorem 8. If ( ) ( ) ( )f x g x h x= , then ( ) ( ) ( ) ( ) ( )
0 0

k k

l l

F k G l H k l G k l H l
= =

= − = −  . 

Theorem 9. If ( ) ( )
0

x

x
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( )1G k

F k
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−
=  for 1k  .  

Theorem 10. If ( ) ( )
. 1 2 1
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Theorem 11. If ( ) ( )f x g x a= + , then ( ) ( )
N

h k

h k

h
F k a G h

k

−

=

 
=  

 
 for  N → . 

Theorem 12. If ( ) ( )( )nf x g x a= + , then ( )
( )

( )
!

!

N
h k n

h k n

k n h
F k a G h

k nk

− −

= +
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 . 

Theorem 13. If ( ) ( ) ( )f x p x a g x b= + + , then  

  ( ) ( ) ( )1 2

1 2

1 2
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0

k N N
h l h k l
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Theorem 14. If ( ) ( ) ( )f x p x g x a= + , then ( ) ( ) ( )
0

k N
h l

l h l

h
F k a P k l G h

l

−

= =

 
= − 

 
 . 

Proof. Let the differential transformation of function p(x) be P(k) and function ( )g x a+  be O(k) at x = x0. Then, 

by applying Theorem 8, the transformation of f(x) can be obtained as 

  ( ) ( ) ( )
0

k

l

F k P k l O l
=

= − , 

and from Theorem 11 we have  

 ( ) ( )
N

h l
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h
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 
=  
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 . 

By utilizing these terms 

 ( ) ( ) ( )
0
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l h l
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Theorem 15. If ( ) ( ) ( )( )nf x p x g x a= + , then  
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Theorem 16. If ( ) ( ) ( )
0

x

x

f x g x h t dt=  , then ( ) ( )
( )1

0

1k

l

H k l
F k G l
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− −
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−
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Theorem 17. If ( ) ( ) ( )
0

x

x

f x g t h t dt=  , then ( ) ( )
( )1

0

1k

l

H k l
F k G l
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− −
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The proof of Theorems 1-8 are not given due to well-known fundamental properties of DTM referred to in various 

papers [1-8, 11, 12, 18], and the proofs of Theorems 9-17 are available in the study of Arikoglu and Ozkol [2-7]. 

Newly introduced theorems with the proofs to solve the IDDEs can be given as 

Theorem 18. If ( ) ( )
0

x

x

f x g t a dt= + , then ( ) ( )1

1

1

1

h k

h k

h
F k a G h

kk


− +

= −

 
=  

− 
  for 1k  . 

Proof. By using the definitions of DTM given in equations (1) and (2), we can write 
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If the index of k is started from k = 1 instead of k = 0 in the outer sum, we can rewrite f(x) as 
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By using equation (2) we get the following transformed function 
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Proof. By employing the definition of DTM expressed in equation (2), we can write 
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From Theorem 18, the expression above can be rewritten as follows 
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If the index of k is started from k = n instead of k = 0, we can rewrite f(x) as 
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By employing the definition in equation (2), we get the following transformed function 
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Theorem 20. If ( ) ( ) ( )
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Proof. Let the differential transformation of function p(x) be P(k) and function ( )
0

x

x

g t a dt+  be O(k) at x = x0. 

Then, by applying Theorem 8, the transformation of f(x) can be obtained as 
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and from Theorem 18 we have 
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By utilizing these terms 
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Proof. Let the product of inner functions be equal to function g(t) that differential transform of it with the help 

of Theorem 13 can be rewritten as 
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h h G h G h
x x a b

k k k k

 
+ +

= =


+ − − +

= = = = −

 
= − = − 

+ + 

  
= −   

− +  

 

  

       

If the index of k is started from k = 1 instead of k = 0, we can obtain f(x) as 

 ( ) ( )
( ) ( )

1 1 2 1

1 1 1 2 1

1
1 2 1 1 2 21

0

1 0 1 1 1 1

k N N
k h k h k k

k k h k h k k

h h G h G h
f x x x a b

k k k k

 −
− − + +

= = = = − −

  
= −   

− −  
  . 

Again, applying equation (2), we get the following transformed function 

  ( )
( ) ( )

1 1 2 1

1 1 1 2 1

1
1 2 1 1 2 21

0 1 1 1 1

k N N
h k h k k

k h k h k k

h h G h G h
F k a b

k k k k

−
− − + +

= = = − −

  
=   

− −  
   where 1.k   

Theorem 22. If ( ) ( ) ( ) ( ) ( )
0

1 1 2 2 1 1...

x

n n n n

x

f x g t a g t a g t a g t a dt− −= + + + + , then 

 

( )
1 3 2

1 2 2 1 1 1 2 2 1 1 1 2 1

1 1 21 1 2 2 1

1

0 0 0 0 1 1

12

1 2 12 1

1 2 1

1
... ...

...
1

...

n

n n n n n n n

n n n n n

k k kk N N N N

k k k k h k h k k h k k h k k

n n

n n n

h k k h k kh k h k k

n n

h
F k

kk

h hh

k k k kk k

a a a a

−

− − − − − −

− − −

= = = = = = − = − = − −

−

− − −

− + − +− − +

−

 
=  

 

   
    

− − −−    



      

( ) ( ) ( ) ( )

1 1

1 1 2 2 1 1... .n n n nG h G h G h G h

− +

− −

 

Proof. The proof of Theorem 22 is not given here, and it can be obtained by generalizing the proof of Theorem 

21. 
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Theorem 23. If ( ) ( ) ( )
0

x

x

f x p t g t a dt= + , then ( ) ( ) ( )
1

0

1
1

k N
h l

l h l

h
F k a P k l G h

lk

−
−

= =

 
= − − 

 
 for N → . 

Proof. Let the product of inner functions be equal to u(t) function that differential transform of it with the help 

of Theorem 14 can be written as 

 ( ) ( ) ( )
0

k N
h l

l h l

h
U k a P k l G h

l

−

= =

 
= − 

 
 , 

and the inverse transform of U(k) function can be written as follow 

 ( ) ( ) ( )0

0

k

k

u t t x U k


=

= − . 

By substituting g(t) function into integral expression, f(x) function can be written as 

 

( ) ( ) ( ) ( ) ( ) ( )

( )
( )

( )
( )

( )
( ) ( )

0 0 0

0

0 0

0 0

1 1

0 0

0 0

1

0

0 0

1 1

.
1

x x x
k k

k kx x x

x

k k

k k
x

k N
k h l

k l h l

f x u t dt t x U k dt t x U k dt

U k U k
t x x x

k k

P k l G hh
x x a

l k

 

= =

 
+ +

= =


+ −

= = =

= = − = −

 
= − = − 

+ + 

− 
= −  

+ 

   

 



       

If the index of k is started from k = 1 instead of k = 0, function f(x) can be written as 

 ( ) ( )
( ) ( )1

0

1 0

1k N
k h l

k l h l

P k l G hh
f x x x a

l k

 −
−

= = =

− − 
= −  

 
 . 

By using equation (2), we get the following transformed function 

 ( )
( ) ( )1

0

1k N
h l

l h l

P k l G hh
F k a

l k

−
−

= =

− − 
=  

 
  where 1.k   

Remark 1. In the solution of the Fredholm integrals, the integral sign is definite and 𝛼, 𝛽∈ IR are constant values, 

then f(x) function can be written by utilizing DTM definitions in equations (1) and (2) as follow 

  ( ) ( ) ( ) ( )
( )

0

0 0

1

1x N
k k

kx

G k
f x g t dt x x

k
 

=

−
 = = − − −
   , N → . 

3. Applications and Numerical Results 

Example 1. Let’s first consider the following the pantograph type Volterra integro-differential equation that was 

considered in the studies of Reutskiy [13], Rihan et al. [14], and Yuzbasi [17] 

  
1

'( ) ( 1) ( )

x

x

u x u x u t dt
−

= − +   (4) 

with the initial condition ( )0 1u = . At x0 = 0, equation (4) gives out another initial condition 

  '(0) ( 1)u u = − + ,  (5) 

where α ∈ IR is a constant value  
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  ( ) ( ) ( )
0 1

1

1 11 0

1
( ) ( 1) 1 0 1

1

N N
k h k

k h k

h
u t dt u t dt U h

kk


− +

= = −−

 
= = − = − − 

− 
   . 

The exact solution to this problem is ( ) xu x e= . Before applying concerned Theorems, equation (4) must be 

rearranged as 

  

1

0 0 0 1

1

0 0 0

'( ) ( 1) ( ) ( ) ( 1) ( ) ( 1)

( 1) ( ) ( 1) ( 1) .

x x x x

x x

u x u x u t dt u t dt u x u t dt u t dt

u x u t dt u t dt u t dt

−

= − + − = − + − −

= − + − − + −

   

  

 (6) 

Then, the problem can be reduced into a set of linear algebraic equations, and the following recurrence relation 

can be obtained for 1k   

  ( ) ( ) ( ) ( )
1

1

( 1) 1
( 1) ( 1) 1 ( ) 1 ,

1

N
h k h k

h k h k

h hU k
k U k U h U h k

k kk k



− − +

= = −

   −
+ + = − + − − +   

−   
   (7) 

and the transformed initial conditions at x0 = 0 can be obtained 

  ( )0 1U = , and ( ) ( ) ( )
0

1 1
N

k

k

U U k
=

= + − . (8) 

Using the inverse transform definition in equation (2), we get the following series solution for the sufficiently 

larger chosen number of terms N = 8, 

  
( )

( )

2 3 4 5

6 7 8 9

1 0.999980 0.499972 0.166659 0.041699 0.008315

0.001369 0.000223 0.000013 .

u x x x x x x

x x x O x

= + + + + +

+ + + +
 (9) 

Numerical results obtained with DTM for N = 8 can be seen in Table 1. 

Table 1. Comparison of the absolute errors and numerical results for N = 8 

x Exact DTM Error Ref.[13] Error Ref. [17] Error 

0.0 1.000000000 1.000000000 0.0e+00   0.0e+0 1.000000000 3.1e-14 

0.2 1.221402758 1.221397739 5.0e-06 - 3.9e-8 1.221404341 1.5e-6 

0.4 1.491824697 1.491812590 1.2e-05 - 3.8e-8 1.491826867 2.1e-6 

0.6 1.822118800 1.822097946 2.1e-05 - 1.4e-7 1.822120801 2.0e-6 

0.8 2.225540928 2.225509327 3.2e-05 - 2.1e-7 2.225542667 1.7e-6 

1.0 2.718281828 2.718234072 4.8e-05 - 2.4e-7 2.718283674 1.8e-6 

 

Example 2. Now, we introduce the following the Fredholm IDDE with variable coefficients, which is also 

solved by using the Hybrid Euler-Taylor matrix method in the study of Balci and Sezer [10]  

  ( ) ( ) ( )
1

2

0

'' ' 1 1x xy x e y x e y t dt+ −− + = + − , (10) 
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with the initial conditions ( )0 2y =   and  ( )' 0 1y = − . The exact solution of equation (10) is given 

( ) 1 xy x e−= + . Applying concerning Theorems to equation (10), the problem is expressed by the following 

recurrence relation for 1k  , which represents a set of linear algebraic equations 

  ( )( ) ( )
( )

( )
( )

( )
( )2

0 1

1 ! 11
2 1 2 .

1! ! !

k
k N

l h k l

k l h
k k Y k e Y h k

k lk l l k
 

= = − +

− + − 
+ + + − = + 

− +−  
  , (11) 

where ( )
1

0

1y t dt = −  and equation (12) can be rewritten as follows 

  ( )
( )

( ) ( ) ( )
( )2

0 1

1 1!
2 .

12 ! ! !

k
k N

l h k l

k l Y hhk
Y k e k

k lk l k
 

= = − +

 − + − 
 + = + +  − ++   
  , (12) 

and the transformed initial conditions at x0 = 0 can be obtained 

  ( )0 2Y =   and  ( )1 1Y = − . (13) 

By using the inverse transform property in equation (12), the series solution of equation (10) is obtained in the 

terms of α and x. To obtain the approximate solution by using DTM, the value of α is firstly obtained by 

utilizing Remark 1 given for the solution of Fredholm integrals as follow 

  ( ) ( )
1

1 1

1
1

1

N N
h k

k h k

h
Y h

kk


− +

= = −

 
= − 

− 
  , (14) 

and then algebraic equations in equations (13) and (14) are solved together. Ultimately, the following series 

solutions are obtained for N = 2 and N =5, respectively. 

  
( ) ( )

( ) ( )

2 3

2 3 4 5 6

2 0.304352

2 0.512537 0.174662 0.038322 0.003914 .

y x x x O x

y x x x x x x O x

= − + +

= − + − + − +
 (15) 

In Table 2, numerical results are presented with a comparison to exact results and Ref. [10]. 
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Table 2. Error analysis and numerical  results for the different values of N 

N x Exact DTM  Error Ref. [10] Error 

2 

0.0 2.000000000    2.000000000 0.00000e+00 1.999995000 0.5000e−5 

0.2 1.818730753    1.812174117 6.55664e-03 1.811862600 0.6868153e−2 

0.4 1.670320046    1.648696471 2.16236e-02 1.647457400 0.22862646e−1 

0.6 1.548811636    1.509567060 3.92446e-02 1.506779400 0.42032236e−1 

0.8 1.449328964    1.394785885 5.45431e-02 1.389828600 0.59500364e−1 

1.0 1.367879441    1.304352946 6.35265e-02 1.296605000 0.71274441e−1 

              

              

5 

0.0 2.000000000 2.000000000 0.00000e+00 1.999550000 0.450000e−3 

0.2 1.818730753 1.819164272 4.33520e-04 1.818747472 0.16719e−4 

0.4 1.670320046 1.671768634 1.44859e-03 1.671286512 0.16719e−4 

0.6 1.548811636 1.551448833 2.63720e-03 1.550846672 0.2035036e−2 

0.8 1.449328964 1.453011618 3.68265e-03 1.452280432 0.2951468e−2 

1.0 1.367879441 1.372284441 4.40500e-03 1.371450000 0.3570559e−2 

 

Example 3. Next, the following third-order linear Fredholm integro-differential difference equation with a 

variable coefficient [9, 15, 16] is introduced 

  ( ) ( ) ( ) ( ) ( ) ( )
1

1

''' '' 1 ' 1 1y x y x xy x xy x g x y t dt
−

+ − − − − = + + − , (17) 

where ( )1 cos 2 = − , ( ) ( ) ( )( )( )sin 1 cos 1g x x x x= − − + + , and the initial conditions are given as follows 

  ( )0 0y = , ( )' 0 1y = , and  ( )'' 0 0y = . (18) 

In this problem, the exact solution is given ( ) ( )siny x x= . Using concerned Theorems, equation (17) can be 

transformed the following recurrence relation 

  

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

1 0 1

1

0

3 !
3 1 1 1

1 1!

1 1 1 1 ,

N k N
h k

h k l h k l

k N
h k l h k l

l h k l

k h h
Y k k Y h k l

k k lk

h
l Y h l Y h G k k

k l
    

− −

= + = = − +

− + − − +

= = −

+    
+ + + − − − +    

+ − +   

 
− − − − − = + + 

− 

  

 

 (19) 

where   ( )
1

1

1y t dt
−

= − ,  and 

  ( )
( )

( )
( ) ( )

0

11
cos sin 1 cos sin 1

! 2 2 ! 2 2

k

l

l
G k k k k l k l

k k l

   

=

−          
= − + − − − + − −          

−          
 , 

and the initial conditions at x0 = 0 are transformed as follows 
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  ( )0 0Y = , ( )1 1Y =  , and  ( )2 0Y = . (20) 

Fredholm integral term β in equation (19) can be written by using Remark 1 as follow 

  
( ) ( )

( ) ( )
1

1 1

1 1
1

1

k k
N N

h k

k h k

h
Y h

kk


− +

= = −

− −  
= − 

− 
  . (21) 

Using the recurrence relation in equation (19), transformed initial conditions in equation (20), and Fredholm 

Integral term in equation (21), Y(k) for 1k   is obtained and then employing inverse transform rule, the 

following series solution of equation (17) is obtained for N = 6 

  ( ) ( )3 4 5 6 70.178773 0.053303 0.0089682 0.004715y x x x x x x O x= − + + + + . (22) 

Table 3. Comparison of the absolute errors  for N = 6 

x DTM Ref. [9] Ref. [15] Ref. [16] 

-1.0 3.73e-02 3.84e-02 2.53e-02 2.88e-02 

-0.8 1.46e-02 1.82e-02 1.19e-02 1.36e-02 

-0.6 4.13e-03 7.00e-03 4.57e-03 5.22e-02 

-0.4 5.77e-04 1.86e-03 1.21e-03 1.38e-03 

-0.2 1.17e-05 2.04e-03 1.33e-04 1.52e-04 

0.0 0.00e+00 0 0.00e+00 0 

0.2 1.82e-04 1.48e-03 1.00e-04 1.10e-04 

0.4 2.11e-03 9.67e-03 6.89e-04 7.20e-04 

0.6 9.25e-03 2.55e-03 2.06e-03 1.90e-03 

0.8 2.65e-02 4.44e-03 4.56e-03 3.34e-03 

1.0 5.99e-02 5.76e-03 8.97e-03 4.36e-03 

 

Example 4. In this problem, we will consider the second-order linear Volterra IDDE  

  ( ) ( ) ( )1

0

'' 2 1

x

xu x u x e u t dt−= − + , (23) 

and the initial conditions at x0 = 0 are defined as follows  

  ( )0 1u =  and ( )' 0 1u = . (24) 

Here, the exact solution of equation (23) is 
xy e= . Employing concerned DTM Theorems, equation (23), can 

be transformed for 1k  as follows 

  
( )

( ) ( )
( )

( )

1 1

2 ! 1 1
2 2

1! !

k N
k

l h l

k U hh
U k U k

lk e k l l= = −

+  
+ = −  

− − 
  , (25) 

and the initial conditions in equation (24) transforms to 

  ( )0 1U =   and ( )1 1U = . (26) 
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Taking N = 9 and applying the inverse transform formula in equation (2) after finding Y(k) values from 

equations (25) and (26), we get the following series of solution 

  
( )

( )

2 3 4 5

6 7 8 9 10

1 0.500029 +0.166664 0.041674 0.0089682

0.008330 0.001392 +0.000196 0.000029 .

u x x x x x x

x x x x O x

= + + + +

+ + + +
 (27) 

Ultimately, a comparison of exact analytical results with the numerical results is presented in Table 4 for 

different values of N. 

Table 4. Numerical results vs. the exact result for different values of N 

x Exact N = 5 N = 6 N = 7 N = 8 N = 9 

0.0 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 

0.2 1.22140276 1.22623384 1.22084977 1.22153392 1.22139161 1.22140395 

0.4 1.49182470 1.51141446 1.48958429 1.49235706 1.49177958 1.49182953 

0.6 1.82211880 1.86737584 1.81691200 1.82335660 1.82201434 1.82213005 

0.8 2.22554093 2.30877243 2.21574257 2.22785101 2.22534589 2.22556213 

1.0 2.71828183 2.85307913 2.70155424 2.72210580 2.71795014 2.71831767 

 

Example 5. Ultimately, let us solve the following third-order linear Volterra IDDE  

  ( ) ( ) ( ) ( ) ( )
0.5 1

1

3
''' ' cos 2 cos 2

4 4

x
x

u x u x t u t dt

+

= − − + − , (28) 

with the initial conditions 

  ( )0 1u = , ( )' 0 0u = , and ( )'' 0 1u = − . (29) 

The exact solution of equation (28) is ( )cosy x= . Before applying DTM Theorems, equation (28) needs to be 

rearranged by changing the definite integral boundaries as follow 

  ( ) ( ) ( ) ( ) ( )
0.5

0

3
''' ' cos 2 cos 1 1

4 4

x
x

u x u x t u t dt= − − + + − . (30) 

Using concerned DTM Theorems, equation (30) is transformed to  

  

( )
( ) ( ) ( )

( )
( ) ( )

( ) ( )
( )

1

0

3 ! cos 23 0.5
3 1 1 1 1

! 4 4

1
cos 1 1 ,

2 1 !

k k N
h l

l h l

k h
U k k U k k

lk k

U h k l
k l





−
−

= =

+  
+ = − + + − − + − 

 

 
 − − + 

− − 


 (31) 

and the transformed initial conditions at x0 = 0 are ( )0 1U = , ( )1 0U = , and ( )2 1/ 2U = −  
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By using equations (31), (32), and (2), the following series solution of equation (28) is obtained for N = 5, N 

=7 respectively. 

  
( ) ( )

( ) ( )

2 3 4 6

2 3 4 5 6 8

1 0.5 0.000360 0.041686

1 0.5 0.000124 0.041674 0.000004 0.001388 .

u x x x x O x

u x x x x x x O x

= − − − +

= − − + + − +
 (33) 

For different values of series term N, a comparison of exact analytical results to the approximate numerical 

results and absolute errors are presented in Table 5. 

Table 5. Comparison of numerical results to the exact results and absolute errors 

    N = 5 N = 7 

x Exact Approx. Result Abs. Error Approx. Result Abs. Error 

-1.0 0.540302306 0.542046967 1.744661e-03 0.540398861 9.655491e-05 

-0.8 0.696706709 0.697259370 5.526602e-04 0.696765270 5.856050e-05 

-0.6 0.825335615 0.825480448 1.448332e-04 0.825361866 2.625078e-05 

-0.4 0.921060994 0.921090252 2.925778e-05 0.921068921 7.926565e-06 

-0.2 0.980066578 0.980069583 3.005543e-06 0.980067573 9.952127e-07 

0.0 1.000000000 1.000000000 0.000000e+00 1.000000000 0.000000e+00 

0.2 0.980066578 0.980063813 2.765049e-06 0.980065586 9.918687e-07 

0.4 0.921060994 0.921044087 1.690696e-05 0.921053090 7.903815e-06 

0.6 0.825335615 0.825324642 1.097276e-05 0.825308811 2.680398e-05 

0.8 0.696706709 0.696890052 1.833423e-04 0.696640747 6.596188e-05 

1.0 0.540302306 0.541325643 1.023337e-03 0.540158759 1.435465e-04 

 

4. Conclusion 

The solution of integral equations is a challenging job, and it is most difficult to obtain the analytical solution. 

Improved Jacobi matrix method [9], Hybrid Euler–Taylor matrix method [10], the backward substitution method 

[13], mono-implicit Runge-Kutta method [14], Legendre polynomials [15], Legendre spectral collocation method 

[16], and Laguerre approach [17] are some of the employed numerical methods, until now. In this study, DTM is 

extended to solve Volterra and Fredholm type integro-differential difference equations with variable coefficients 

by introducing new theorems. Concerned Theorems can be deduced from the basic definitions in equations (1) 

and (2) and fundamental DTM Theorems, easily. Ultimately, some examples are carried out to demonstrate the 

reliability and accuracy of DTM, and their approximate results in the case of employing DTM are compared to 

approximate results obtained by using other common numerical solution techniques and exact analytical results 

of these examples. It is shown that DTM is one of the reliable semi-numerical and analytical solver tools based 

on Taylor series expansion for the solution of IDDEs. 
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