
Çankaya University Journal of Science and Engineering

Volume 9 (2012), No. 1, 59–67

The Modified (G′/G)-Expansion Method for Exact
Solutions of the (3 + 1)-Dimensional Jimbo-Miwa

Equation

Reza Abazari

Department of Mathematics, Ardabil Branch, Islamic Azad University,
P.O. Box 56169-54184, Ardabil, Iran

abazari-r@uma.ac.ir

Özet. Bu makalede, (G′/G)-açılım metodunu başarıyla değiştirdik ve bir uygulama olarak
(3+1)-boyutlu Jimbo-Miwa denkleminin kesin çözümlerini inşa etmek için önerdik. Elde
edilen çözümlerin yani hiperbolik fonksiyon çözümlerinin, trigonometrik fonksiyon çözüm-
lerinin ve kesirli çözümlerin her biri çalışılan denklemdeki değişkenlerin açık doğrusal bir
fonksiyonunu içermektedir. Önerilen metodun, sembolik hesaplama yardımıyla, matema-
tiksel fizikteki oluşum denklemlerinin çözümü için daha güçlü bir matematiksel araç olduğu
gösterildi.1

Anahtar Kelimeler. Doğrusal olmayan oluşum denklemi, Jimbo-Miwa denklemi, (G′/G)-
açılım metodu, hiperbolik fonksiyon çözümleri, trigonometrik fonksiyon çözümleri, rasyo-
nel çözümler.

Abstract. In this paper, we successfully modified the (G′/G)-expansion method and
as an application proposed to construct exact solutions of the (3+1)-dimensional Jimbo-
Miwa equation. Each of the obtained solutions, namely the hyperbolic function solutions,
the trigonometric function solutions and the rational solutions contain an explicit linear
function of the variables in the equation in question. It is shown that the proposed method
with the help of a symbolic computation provides a more powerful mathematical tool for
solving nonlinear evolution equations in mathematical physics.

Keywords. Nonlinear evolution equation, Jimbo-Miwa equation, (G′/G)-expansion
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1. Introduction

Nonlinear evolution equations (NLEEs) have been a subject of study in various

branches of mathematical-physical science such as physics, biology, chemistry, etc.
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The analytical solutions of such equations are of fundamental importance since a

lot of mathematical-physical models are described by NLEEs. Among the possible

solutions to NLEEs, certain special form solutions may depend only on a single

combination of variables such as traveling wave variables. In the literature, there

is a wide variety of approaches to nonlinear problems for constructing traveling

wave solutions. Some of these approaches are the Jacobi elliptic function method

[1], the inverse scattering method [2], Hirota’s bilinear method [3], the homogeneous

balance method [4], the homotopy perturbation method [5], the Weierstrass function

method [6], the symmetry method [7], the Adomian decomposition method [8],

the differential transform method [9], the tanh/coth method [10], the Exp-function

method [11, 12, 13] and so on. But, most of the methods may sometimes fail or

can only lead to a kind of special solution and the solution procedures become very

complex as the degree of nonlinearity increases.

Recently, the (G′/G)-expansion method, first introduced by Wang et al. [14], has

become widely used to search for various exact solutions of NLEEs [15]–[23]. The

value of the (G′/G)-expansion method is that one treats nonlinear problems by

essentially linear methods. The method is based on the explicit linearization of

NLEEs for traveling waves with a certain substitution which leads to a second-order

differential equation with constant coefficients. Moreover, it transforms a nonlinear

equation to a simple algebraic computation.

The present paper is motivated by the desire to modify the (G′/G)-expansion

method for constructing more general exact solutions of NLEEs. In order to illus-

trate the validity and advantages of the modified method, we would like to employ

it to solve the (3+1)-dimensional Jimbo–Miwa equation:

2uyt + 3uyuxx + 3uxuxy − 3uxz + uxxxy = 0.

2. Description of the (G′/G)-Expansion Method

The objective of this section is to outline the use of the (G′/G)-expansion method

for solving certain nonlinear partial differential equations (PDEs). Suppose we have

a nonlinear PDE for u(x, y, z, t), in the form

P (u, ut, ux, uxy, uyz, utt, ...) = 0, (1)

where P is a polynomial in its arguments, which includes nonlinear terms and the

highest order derivatives. The transformation u(x, y, z, t) = U(ξ), ξ = ax + by +
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cz − ωt, reduces Eq. (1) to the ordinary differential equation (ODE)

P (U,−ωU ′, aU ′, abU ′′, bcU ′′, ω2U ′′, ...) = 0, (2)

where U = U(ξ), and prime denotes derivative with respect to ξ. We assume that

the solution of Eq. (2) can be expressed by a polynomial in (G′/G) as follows:

U(ξ) =
m∑
i=1

αi

(G′
G

)i
+ α0, αm 6= 0, (3)

where α0 and αi are constants to be determined later, G(ξ) satisfies a second order

linear ordinary differential equation (LODE):

d2G(ξ)

dξ2
+ λ

dG(ξ)

dξ
+ µG(ξ) = 0, (4)

where λ and µ are arbitrary constants. Using the general solutions of Eq. (4), we

have

G′(ξ)

G(ξ)
=



√
λ2−4µ
2

(
C1 sinh(

√
λ2−4µ
2

ξ)+C2 cosh(

√
λ2−4µ
2

ξ)

C1 cosh(

√
λ2−4µ
2

ξ)+C2 sinh(

√
λ2−4µ
2

ξ)

)
− λ

2
, λ2 − 4µ > 0,

√
4µ−λ2
2

(
−C1 sin(

√
4µ−λ2
2

ξ)+C2 cos(

√
4µ−λ2
2

ξ)

C1 cos(

√
4µ−λ2
2

ξ)+C2 sin(

√
4µ−λ2
2

ξ)

)
− λ

2
, λ2 − 4µ < 0.

(5)

To determine u explicitly, we take the following four steps:

Step 1. Determine the integer m by substituting Eq. (3) along with Eq. (4) into

Eq. (2), and balancing the highest order nonlinear term(s) and the highest order

partial derivative.

Step 2. Substitute Eq. (3) give the value of m determined in Step 1, along with

Eq. (4) into Eq. (2) and collect all terms with the same order of (G′/G) together,

the left-hand side of Eq. (2) is converted into a polynomial in (G′/G). Then set

each coefficient of this polynomial to zero to derive a set of algebraic equations for

a, b, c, ω, α0 and αi.

Step 3. Solve the system of algebraic equations obtained in Step 2, for a, b, c, ω, α0

and αi by the use of Maple.

Step 4. Use the results obtained in above steps to derive a series of fundamental

solutions v(ξ) of Eq. (2) depending on (G′/G), since the solutions of Eq. (4) are

well known to us, then we can obtain exact solutions of Eq. (1) by integrating v(ξ)
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with respect to ξ, r times:

u(ξ) =

ˆ ξ

0

ˆ ξr

0

...

ˆ ξ2

0

v(ξ)dξ1dξ2...dξr−1dξr +
r∑
j=0

djξ
r−j, (6)

where dj are arbitrary constants. If r = 1, there is only the last defined integral

over the interval [0, ξ]. Otherwise, the obtained solutions will definitely contain a

polynomial part in ξ.

3. Application on the (3+1)-Dimensional Jimbo-Miwa

Equation

In this section, we would like to use our method to obtain new and more general

exact solutions of the (3+1)-dimensional Jimbo-Miwa equation:

2uyt + 3uyuxx + 3uxuxy − 3uxz + uxxxy = 0, (7)

which passes the Painleve test only for a subclass of solutions and its symmetry

algebra does not have a Kac-Moody-Virasoro structure.

Using the transformation ξ = ax+ by + cz − ωt, we reduce Eq. (7) into an ODE of

the form:

−(2bω + 3ac)u′′ + 6a2bu′u′′ + a3bu′′′′ = 0. (8)

Integrating Eq. (8) once with respect to ξ and setting the integration constant as

zero yields

−(2bω + 3ac)u′ + 3a2b(u′)2 + a3bu′′′ = 0, (9)

further letting r = 1, and u′ = v, we have

−(2bω + 3ac)v + 3a2b(v)2 + a3bv′′ = 0. (10)

According to Step 1, we get m + 2 = 2m, hence m = 2. We then suppose that Eq.

(10) has the following formal solutions:

v = α2

(
G′

G

)2

+ α1

(
G′

G

)
+ α0, α2 6= 0. (11)

Substituting Eq. (11) along with Eq. (4) into Eq. (10) and collecting all terms with

the same order of (G′/G), together, the left-hand sides of Eq. (10) are converted

into a polynomial in (G′/G).
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Setting each coefficient of each polynomial to zero, we derive a set of algebraic

equations for a, b, c, ω, α0, α1, and α2, as follows:

(
G′

G

)0

: − 3acα0 − 2bωα0 + 3a2bα2
0 + a3bα1λµ+ 2a3bα2µ

2 = 0,(
G′

G

)1

: − 3acα1 − 2bωα1 + 6a2bα0α1 + a3bα1λ
2 + 2a3bα1µ+ 6a3bα2λµ = 0,(

G′

G

)2

: 3a2bα2
1 − 3acα2 − 2bωα2 + 6a2bα0α2+

+ 3a3bα1λ+ 4a3bα2λ
2 + 8a3bα2µ = 0, (12)(

G′

G

)3

: 2a3bα1 + 6a2bα1α2 + 10a3bα2λ = 0,(
G′

G

)4

: 6a3bα2 + 3a2bα2
2 = 0.

Solving the set of algebraic equations by use of Maple, we get the following results:

α2 = −2a, α1 = −2aλ, α0 = −1

3
a(λ2 + 2µ), ω =

a(4a2bµ− a2bλ2 − 3c)

2b
, (13)

and

α2 = −2a, α1 = −2aλ, α0 = −2aµ, ω = −a(4a2bµ− a2bλ2 + 3c)

2b
. (14)

Substituting the above two sets in (11), we get

v = −2a

(
G′

G

)2

− 2aλ

(
G′

G

)
− 1

3
a(λ2 + 2µ), ω =

a(4a2bµ− a2bλ2 − 3c)

2b
, (15)

and

v = −2a

(
G′

G

)2

− 2aλ

(
G′

G

)
− 2aµ, ω = −a(4a2bµ− a2bλ2 + 3c)

2b
. (16)

Substituting the general solutions of Eq. (4) into Eqs. (15) and (16), respectively,

we obtain three types of traveling wave solutions of Eq. (7):
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When λ2 − 4µ > 0, we obtain hyperbolic function solutions:

u = −1

2
a(λ2 − 4µ)

ˆ ξ

0

(
C1 sinh(

√
λ2−4µ
2

ξ) + C1 cosh(

√
λ2−4µ
2

ξ)

C1 cosh(

√
λ2−4µ
2

ξ) + C1 sinh(

√
λ2−4µ
2

ξ)

)2

dξ1

+
1

6
a(λ2 − 4µ)ξ + d, (17)

where ξ = ax+ by + cz − (a(4a2bµ− a2bλ2 − 3c)/2b)t, C1, C2, and d are arbitrary

constants,

u = −1

2
a(λ2 − 4µ)

ˆ ξ

0

(
C1 sinh(

√
λ2−4µ
2

ξ) + C1 cosh(

√
λ2−4µ
2

ξ)

C1 cosh(

√
λ2−4µ
2

ξ) + C1 sinh(

√
λ2−4µ
2

ξ)

)2

dξ1

+
1

2
a(λ2 − 4µ)ξ + d, (18)

where ξ = ax + by + cz + (a(4a2bµ− a2bλ2 + 3c)/2b)t, C1, C2, and d are arbitrary

constants.

When λ2 − 4µ < 0, we obtain trigonometric function solutions:

u = −1

2
a(4µ− λ2)

ˆ ξ

0

(
−C1 sin(

√
4µ−λ2
2

ξ) + C1 cos(

√
4µ−λ2
2

ξ)

C1 cos(

√
4µ−λ2
2

ξ) + C1 sin(

√
4µ−λ2
2

ξ)

)2

dξ1

+
1

6
a(λ2 − 4µ)ξ + d, (19)

where ξ = ax+ by + cz − (a(4a2bµ− a2bλ2 − 3c)/2b)t, C1, C2, and d are arbitrary

constants,

u = −1

2
a(4µ− λ2)

ˆ ξ

0

(
−C1 sin(

√
4µ−λ2
2

ξ) + C1 cos(

√
4µ−λ2
2

ξ)

C1 cos(

√
4µ−λ2
2

ξ) + C1 sin(

√
4µ−λ2
2

ξ)

)2

dξ1

+
1

2
a(λ2 − 4µ)ξ + d, (20)

where ξ = ax + by + cz + (a(4a2bµ− a2bλ2 + 3c)/2b)t, C1, C2, and d are arbitrary

constants.
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And finally, when λ2 − 4µ = 0, we obtain the rational solution:

u =
2aC2

C1 + C2ξ
+ d, (21)

where ξ = ax+ by + cz + (3ac/2b)t, C1, C2, and d are arbitrary constants.

To obtain some special cases of the solutions obtained above, we set C2 = 0, then

Eq. (17) becomes

u = a
√
λ2 − 4µ tanh

(√
λ2 − 4µ

2
ξ

)
− 1

3
(λ2 − 4µ)ξ + d, (22)

where ξ = ax+ by+ cz− (a(4a2bµ−a2bλ2−3c)/2b)t, and d is an arbitrary constant.

In view of the relation between the kink-type solution and the kink-bell-type solution

[24], from Eq. (22) we also have

u = a
√
λ2 − 4µ

[
tanh(

√
λ2 − 4µ ξ) + isech(

√
λ2 − 4µ ξ)

]
− 1

3
(λ2 − 4µ)ξ + d, (23)

where ξ = ax+ by+ cz− (a(4a2bµ−a2bλ2−3c)/2b)t, and d is an arbitrary constant.

If we set again C1 = 0, then Eq. (22) becomes

u = a
√
λ2 − 4µ coth

(√
λ2 − 4µ

2
ξ

)
− 1

3
(λ2 − 4µ)ξ + d, (24)

where ξ = ax+ by+ cz− (a(4a2bµ−a2bλ2−3c)/2b)t, and d is an arbitrary constant.

Similarly, setting C2 = 0, and using Eq. (19) and the relation [24] we have

u = a
√

4µ− λ2 tanh

(√
λ2 − 4µ

2
ξ

)
− 1

3
(λ2 − 4µ)ξ + d, (25)

where ξ = ax+ by+ cz− (a(4a2bµ−a2bλ2−3c)/2b)t, and d is an arbitrary constant,

and

u = a
√

4µ− λ2
[

tan(
√
λ2 − 4µ ξ)± isec(

√
λ2 − 4µ ξ)

]
− 1

3
(λ2 − 4µ)ξ + d, (26)

where ξ = ax+ by+ cz− (a(4a2bµ−a2bλ2−3c)/2b)t, and d is an arbitrary constant.

We would like to note here that solutions (17)-(26) with an explicit linear function

in ξ can’t be obtained by the (G′/G)-expansion method [17, 18, 20, 23, 24], and that

they have been checked with Maple by putting them back into the original Eq. (7).



66 Abazari

4. Conclusions

In this article, the modified (G′/G)-expansion method is developed to solve the

(3+1)-dimensional Jimbo-Miwa equation, and we successfully obtained more general

traveling wave solutions of this equation. As a result, hyperbolic function solutions

and trigonometric function solutions with parameters are obtained, from which some

known solutions, including the kink-type solitary wave solution and the singular

traveling wave solution, are recovered by setting the parameters as special values.

These obtained solutions with free parameters may be important to explain some

physical phenomena. The paper shows that the modified algorithm is effective and

can be used for many other NLDDEs in mathematical physics.
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