
Using Segment-based Genetic Algorithm with
Local Search to Find Approximate Solution for

Multi-Stage Supply Chain Network Design
Problem

Marjan Kuchaki Rafsanjani* and Sadegh Eskandari*

*Department of Computer Science,
Shahid Bahonar University of Kerman, Kerman, Iran

e-mail: kuchaki@uk.ac.ir, sadegh_esk@yahoo.com.

Abstract: Designing an optimal supply chain network (SCN) is an NP-hard and highly nonlinear problem;
therefore, this problem may not be solved efficiently using conventional optimization methods. In this article,
we propose a genetic algorithm (GA) approach with segment-based operators combined with a local search
technique (SHGA) to solve the multistage-based SCN design problems. To evaluate the performance of the
proposed algorithm, we applied SHGA and other competing algorithms to SCNs with different features and
different parameters. The results obtained show that the proposed algorithm outperforms the other competing
algorithms.

Keywords:. Supply Chain Network; Genetic Algorithm; Segment-Based Operators; Local Search.

1. Introduction

Supply chain (SC) management is an active subject in manufacturing research today,
thus supply chain network (SCN) design became one of the most important topics of
numerical analysis and optimization methods. A supply chain (SC) is a network of
facilities and distribution options that performs the functions of procurement of materials,
transformation of these materials into intermediate and finished products, and the distribution
of these finished products to customers [1]. A multi-stage supply chain network (MSCN)
can be considered as a sequence of stages, each consisting of a set of potential facilities
located in several regions, where each stage supplies demands of the next stage. Thus we
can model such structure by representing facilities and flows of materials respectively using
nodes and weighted arcs.The weight in an arc represents the cost caused by connecting
two nodes corresponding to two ends of the arc. For an arc, we define the outgoing node
as the source and the incoming node as a depot. The multi-stage supply chain network
(MSCN) design problem is to find an allocation of sources to depots, minimizing the
overall costs and satisfying the demands of depots, according to capacities of sources.

Çankaya University Journal of Science and Engineering

Volume 10 (2013), No 2, 185-201.

ISSN 1309 – 6788 © 2013 Çankaya University

MSCN design is an NP-hard problem [11], and its complexity increases extremely with
increasing the size of the problem (number of stages and number of facilities in each
stage). The conventional methods such as local search and hill climbing are inappropriate
to solve MSCN design problem, because these methods solve problems in a serial manner
and they need a lot of time to find appropriate solutions. To overcome these shortcomings,
many genetic algorithm-based heuristic approaches have been developed by the
researchers in the last decade [1, 2, 5, 13,14, 15, 16, 17]. The genetic algorithm (GA) is
a population based searching algorithm that has attracted the attention of many of the
researchers. To solve MSCN design problems using GAs, Syarif, Yun and Gen have devel-
oped a spanning tree-based GA based on Prufer numbers [13], Altiparmak have devel-
oped a steady-state GA with a segment based encoding procedure [1].

However, there are two weaknesses in applying conventional GA to multistage-based
SCs. 1) Conventional GA evaluates each supply chain network using a single evaluation
function, but the MSCN design problem consists of several features (such as number of
stages, number of facilities at each stage and number of materials produced at each stage)
and parameters (such as demand matrixes and transportation cost matrixes) therefore
evaluating individuals using a single fitness function will ignore most of the information
about these details. 2) When the GA is converging to local optimal solution the performance
of GA definitely deteriorates [17], especially for highly nonlinear problem such as the
MSCN design problem. In this paper to overcome these two weaknesses we proposed a
segment based hybrid genetic algorithm with local search (SHGA) to solve the MSCN
design problem.

In section 2, a detailed structure of the MSCN model is suggested. While second section
includes instruction of the proposed segment based GA and its operators, the brief
description of local search and similarity control mechanism is discussed in section 4.
The structure of the proposed SHGA is given in section 5. Moreover, the fifth section
gives computational results followed by conclusions in section 6.

2. Multi-Stage Supply Chain Network (MSCN) Design Problem

At this stage, we provide a formulation of the MSCN design problem. As mentioned in
the previous section, we can model a supply chain network (SCN) using a directed tree
which connects sources to depots using weighted arcs. The overall structure of such a tree
is outlined in Fig. 1. This structure is divided into stages and each stage consists of a set
of nodes. Each node represents a facility that performs a given task so the nodes in each

186 Rafsanjani et al.

stage perform the same class of tasks. A node in the ith stage (except first and last stages)
can be both a source for the nodes of the (i+1)th stage and a depot for nodes of the (i–1)th
stage. The nodes of the first stage can only be sourced and we call them suppliers and the
nodes of the last stage can only be depots and we call them customers.This problem is to
determine the subsets of sources to be opened and to design the distribution network that
will satisfy all capacities and demand requirements for each product imposed by customers
at minimum cost.

Some assumptions for implementing MSCN design problems are defined as follows:

i The number of potential facilities of each stage and their tasks is known.
ii The capacities of sources and the demands of customers are known.

iii Each depot can be supplied by multiple sources.
There are three types of costs: 1) processing costs, 2) annual fixed costs and 3) transportation
costs.
Under these assumptions, we can design a mathematical formulation for the/a MSCN
model as follows:

187CUJSE 10 (2013), No. 2

(1)

(2)

(3)

Eq. (1) shows the objective function of the MSCN design problem. Eq.(2) means that the
sum of capacities, occupied by materials produced in a source, cannot be greater than its
capacity. And constraint (3) means that the sum of the quantities of a material received
by a depot must be equal to the demand of that depot.

3. Genetic Algorithm

The genetic algorithm (GA), introduced by Holland [6], is an evolutionary search technique
that adopts Darwin’ssurvival of the fittest concepts. The most important feature of GAs is
parallel searching and thus generating all possible solutions. This algorithm maintains a
collection of solutions or chromosomes called a population. It initializes apopulation
with potential solutions to the problem and seeks to produce better solutions by combining
the best of the existing ones through the use of genetic operators [5].

In this section, the methodology for constructing the GA for the MSCN design problem
is mentioned. In order to effectively represent this methodology, we illustrated genetic
operators implemented in our proposed GA.

3.1. Representation

In general the performances of GAs and other evolutionary algorithms can be strongly
affected by the problem representation; thus, the problem of encoding is the first step

188 Rafsanjani et al.

FIGURE 1. Structure of supply chain network.

aimed at coding each GA chromosome individual [2]. Different problems have different
data structures or genetic representations. In this study, we used the priority-based encoding,
which is a type of tree-based encoding [3, 4], for the MSCN design problem.

3.1.1. Priority Based Encoding

In the priority-based encoding for MSCN, each chromosome divides into segments
where each segment represents a stage of SCN. Let N be set of stages for an MSCN, the
chromosome based on priority-based encoding consist of INI segments, where each
segment represents transportations of materials between a/the corresponding stage and
the following stage. Let Si, Dj and Mk, respectively be a set of sources at stage i(Si=Fi), set
of depots at stage J(Dj=Fj), and set of materials produced at stage k, ith segment of the
chromosome consists of IMiI parts, and the length of each part is ISiI+IDi+1I. The value of
each gene of the ith segment can be between 1 and IMiI(ISiI+IDi+1I)[1]. Therefore the
length of each chromosome is: ∑ IMiI(ISiI+IDi+1I). Fig. 2 represents a transportation
tree between stage i–1 and stage i and between stage i and stage i+1 of a MSCN
with given transportation cost matrixes (utci–1,i and utci,i+1) and its priority-based
encoding.

189CUJSE 10 (2013), No. 2

INI–1
i=1

FIGURE 2. A sample of transportation tree for multi-product and its encoding.

To find out more about encoding and decoding procedures of segment-based encoding
refer to [1, 13].

3.2. Generating the Initial Population

Initial population and population size are two important parameters of GAs. The initial
population should have a gene pool as large as possible in order for the whole search
space to be able to be explored, thus the initial population is, in most of cases, generated
randomly. The size of the population is an important parameter because the larger a/the
population is, the easier it is to explore the search space inspite of (any) increases in the
time required by a GA to converge [12]. In this study, the population size is selected in
proportion to the length of chromosomes and the diversities of gene values:

p = l x d

Where
p is the population size, and
l is the length of the chromosomes:

d is the average diversity of the gene values:

3.3. Evaluation

The evaluation is a process of assigning a value to each individual according to a fitness
function such that better individuals have higher fitness values. The choice of fitness
function is also very critical because it accurately has to measure the desirability of the
features described by the chromosome [1]. Since the objective is the minimization of the
total cost of the MSCN design, better solutions are those results in lower objective
function. A higher fitness value means the better chromosome, so we define the follow-
ing function to calculate each fitness value:

190 Rafsanjani et al.

(4)

(5)

(6)

(7)

Although a single and exhaustive fitness function such as the one given in Eq. (7) can
describe the goodness of an individual, it is not suitable for complex problems such as
the MSCN design problem for two reasons:

First, the MSCN design problem consists of several features (such as number of stages,
number of facilities at each stage and number of materials produced at each stage)
and parameters (such as demand matrixes and transportation cost matrixes), that the
complexity of the problem strongly depends on them. So evaluating individuals using a
single fitness function will ignore most of the details just mentioned. Second, the length
of chromosome varies with different values of the network features and we will have
very long chromosomes for real world examples (according to Eq. (6)); therefore,
the values of each gene will not play an appropriate role in evaluating all of such
chromosomes using single evaluation functions. In this section, we define an alternative
evaluation method to overcome the problems just mentioned.

3.3.1. Segment-based Evaluation

For the MSCN design problem, the chromosome based on priority-based encoding
consists of several segments, so evaluating each segment independently gives more
detailed information about that segment.In order to evaluate segments of an MSCN
chromosome, we used a segment-based fitness function, defined as Eq.(8) for each
segment of the chromosome:

where, fi is the fitness function for ith segment of the chromosomes. The denominator of
equation obtains the total costs (transformation costs, processing costs and annual fixed
costs) of each segment.

3.4. Selection

Selection is about how to choose individuals from the population for crossing and how
many offspring each will create. The purpose of selection is to emphasize fitter individuals
in the population in hopes that their offspring will have higher fitness [12]. According to
mentioned evaluation methods, we can consider two kinds of selections:

1) Chromosome-based selection using exhaustive fitness function given in Eq. (7),

2) Segment-based selection using segment-based fitness functions given in Eq. (8).

191CUJSE 10 (2013), No. 2

(8)

Fig. 3 demonstrates the difference between segment-based selection and chromosome-
based selection.

Different selection operators, such as a roulette wheel, tournament [10], back controlled
[7], sequential and hybrid [7], can be chosen for different segments in segment-based
selection methods. Hence in the selection step of our proposed genetic algorithm, two
individuals will be selected for each segment according to the evaluation function
defined for that segment and therefore we will select 2(N–1) parents to apply the
crossover operator and generate one offspring.

3.5. Crossover

In this study, a segment-based crossover operator, which is based on uniform crossover [1],
is employed for the MSCN design problem. In the segment-base crossover, each segment
of the offspring is randomly selected with equal chance among the corresponding
segments of parents selected for that segment. Fig.4 demonstrates the overall structure of
the segment-base crossover for the MSCN design problem. For each segment i, two parents
ai and bi, selected using segment-based selection si, participate in constructing of ith segment
of offspring. This crossover operator utilizes a binary mask. Its length is equal to the
number of stages in the MSCN.While “0” means that the offspring will inherit its genet-
ic materials from the first parent, “1” means that the second parent will transfer its genet-
ic materials to the off spring for the corresponding segment.

3.6. Mutation

The mutation operator is critical to the success of genetic algorithms since it determines
the search directions and avoids convergence to local optima [8]. In this paper, we utilize

192 Rafsanjani et al.

FIGURE 3. Segment-based selection using segment-based fitness functions against
chromosome-based selection using exhaustive fitness function.

segment-based mutation as a mutation operator. In the segment-base mutation, firstly a
decision about which segments will be mutated is given by the probability of 0.5, and
then selected segments are mutated [1].

4. Design of Local Search

When applying the GA to a problem, two situations may occur: First, the GA is converg-
ing to the global optimal solution. When this situation occurs, the GA solution is continu-
ously improved. Second, the GA is converging to a local optimal solution. In this situation
the performance of the GA definitely deteriorates and the technique that helps improving
this situation is to insert new individuals with certain high fitness values into a current GA
loop [2]. To find such individuals, we need to search around the convergence area of the
GA loop; so we can use the iterative hill climbing method suggested by Michalewicz [9].
The overall structure of this method is demonstrated in Fig.5. In order to apply a local
search to GA loops, we must determine the convergence of the GA to the local optima. In
this paper, we used the local search control mechanism proposed by Yun [17]. The logic
behind this mechanism is that when the GA is continually converging, the similarity among
the individuals of the GA population becomes higher, and therefore we can use a local
search whenever the similarity among individuals becomes higher than a predefined
threshold. This mechanism uses a similarity coefficient to measure the similarity between
two individuals.

193CUJSE 10 (2013), No. 2

FIGURE 4. The overall structure of segment-base crossover.

Suppose that M= and L= are two individuals of current
population, we can calculate the similarity coefficient (SCim) between L and M as
follows:

Since the priority-based encoding of the MSCN design problem produces individuals
with multiple segments, we can define two types of similarity coefficient between two
individuals: 1) similarity coefficient between corresponding segments of the two indi-
viduals, and 2) similarity coefficient between two individuals themselves. We define the
first kind as follows:

194 Rafsanjani et al.

Therefore, the average SCtm of the SCtm for all individuals in current population can be

expressed as follows:

Where

N1 Population size

N2 Population sizeNumber of SCtm

If the SCtm ≥ β, where β is a predefined threshold, then the similarity among the individuals
is very high and the search by the GA alone may not guarantee an improvement of the
solution. In this situation, therefore, it needs to use a local search technique, around the
solutions converged by a GA loop to improve the GA performance. Therefore, we can
regulate the use of the local search method in a GA loop under the following conditions:

apply local search method to GA loop; if SCtm ≥ β
apply GA alone; otherwise

195CUJSE 10 (2013), No. 2

FIGURE 5. The overall structure of iterative hill climbing method
suggested by Michalewicz [9]

fitness (vn) > fitness (vc)

5. Implementation of Proposed Hybrid Method

The proposed hybrid genetic algorithm (HGA) combines the GA suggested in section 3
and the iterative hill climbing method with a local search control mechanism mentioned
in section 4. The algorithm which describes the process is:

196 Rafsanjani et al.

Algorithm: HGA for multi-stage based supply chain network design problem.
Input: supply chain network (SCN), GA parameters
Output: best solution
Begin

Step1: Genetic Algorithm
Step1.1: Representation
Encode the problem using priority-based encoding discussed in section 3.1.1

Step1.2: Initial population generation
Calculate the population size using equation (4) and generate initial population randomly

Step1.3: Genetic Operators
Step1.3.1: Selection
Select two parents for each segment according the segment-based selection method discussed
in section 3.4
Step1.3.4: Crossover
Crossover 2N chromosomes selected in Step3 using segment-based crossover discussed in
section 3.4
Step1.3.5: Mutation
Mutate the offspring generated in Step4 using segment-based mutation operator discussed in
section 3.5 with pre- defied mutation probability

Step1.4: Evaluation
Evaluating current population using segment-based evaluation discussed in section 3.3.1

Step1.5: Stop Criterion Check
Check the pre-defined stopping criterions satisfaction.
If this criterions are satisfied output the best individual
and stop

Step2: Local search
Apply iterative hill climbing method proposed in [15] using local search controlling mechanism
proposed in section 4 and Go to Step 1.3

End

6. Computational Results

To evaluate the performance of the proposed segment-based hybrid genetic algorithm
(SHGA), the results of the SHGA are compared to the solutions obtained by 1) Simulated
Annealing (SA), 2) simple genetic algorithm without segment-based operators (GA), 3)
hybrid genetic algorithm with local search and without segment-based operators (HGA) [17]
and 4) proposed segment-based GA without local search (SGA) on different MSCN
design problems. To do this, we used several tests on different supply chain networks
with different features (different number of stages and different number of facilities on
different stages).

In this study, we used segment-based selection which applies a tournament selection (TS)
operator for all segments. TS chooses each parent by choosing a tournament size subset
of individuals using roulette selection and then choosing the best individual out of that set
to be a parent [7]. In this article, the tournament size of two, was selected. The probabili-
ties of crossover and mutation operators are selected as 0.85 and 0.05 respectively for all
GAs used in tests. In the local search scheme of the proposed SHGA, the pre-defined coef-
ficient (α) and the predefined threshold value (β) are set to 0.05 and 0.85, respectively.

Twenty different test problems (numbered as 1, …, 20) are generated for comparison.
These test problems are divided into four groups (five test problem per group) based on
their number of stages (N). Test problems in a same group are different in the number of
facilities at each stage i(IFIi). All the parameters such as the number of materials for each
facility, the capacity of each source facility, demand matrix of customers, annual fixed cost
for operation of the source facilities, etc., are generated randomly for each test problem.

We applied the proposed SHGA and other four algorithms to each test problem; Each test
was performed 20 times using MATLAB software. The minimum and mean costs for
MSCNs are obtained when each algorithm reaches a given number of iterations varies
with problem size, as shown in Table 2.

197CUJSE 10 (2013), No. 2

TABLE 2. The results of runs are obtained with different algorithms for MSCN design
problem.

Table 2 shows, SHGA yields the MSCNs with minimum costs compared with the
other four (SA, GA, HGA and SGA) algorithms. Fig.5 depicts more comparative
demonstration of the best solutions found by the five algorithms.

198 Rafsanjani et al.

FIGURE 6. The best solutions cost found by five algorithms for test problems.

In Fig. 6, the SA generated the worst results in all tests and SGA generated the best
results among the other four existing algorithms. Another important point is the effect of
the number of stages in the SHGA performance. Because of the segment-based evaluation
mechanism, as the number of stages becomes larger, the SHGA becomes more efficient
than the other four existing algorithms. For example, suppose the test problems 15 and
18, which have 4 and 5 stages, respectively. The problem 15 has more facilities in its
stages, comparing with problem 18. In spite of the fact that the best solutions found by
five algorithms are in the same range of the two problems, they have more variance in
problem 18.

Conclusions

In this study, a multistage-based SC model has been designed. This model occurs very
often in today’s manufacturing systems. However, MSCN design is an NP-hard problem and
therefore representing and checking all feasible routes in the model may be impractical
when the model is implemented in most conventional algorithms.

As a good alternative for improving this weakness, a new SHGA approach both with a
segment-based operators and a local search technique has been proposed in this study.
We employed the local search control mechanism proposed by Yun [17] in order
to determine convergence of the GA to the local optima. To prove the efficiency of the
proposed SHGA, the results of the SHGA are compared to the solutions obtained by
several algorithms such as simulated annealing (SA), a simple genetic algorithm without
segment-based operators (GA), a hybrid genetic algorithm with local search and without
segment-based operators (HGA) [17] and aproposed segment-based GA without the
local search (SGA) on different MSCN design problems. The computational results have
shown that the proposed SHGA outperforms the other competing algorithms.

Although the proposed SHGA finds lower-cost MSCNs, it exhibits two major deficien-
cies: 1) the run time for each iteration of the proposed algorithm is higher than the other
existing algorithms. This occurs for two reasons: first, the use of segment-based GA
operators, instead of exhaustive operators, needs more computations in each iteration.
Second, the calculation of the average similarity coefficient for a population is an
expensive process since it needs to evaluate the pairwise similarities between all individuals
in the population. 2) The threshold-based similarity coefficient mechanism, introduced
in this paper, defines two crisp conditions for a population, the converged population

199CUJSE 10 (2013), No. 2

and a non-converged population For example, if we select
then two populations with and ,? and with are non-converged
and converged populations respectively, while the two cases may not show any significant
difference.

Our future works are:

1) Introducing some more efficient and exhaustive evaluation functions which are able
to represent detailed information about an MSCN individual.

2) Introducing an efficient GA convergence control mechanism, that uses some non-crisp
concepts such as fuzzy logic to remove the crisp behavior of the threshold-based similarity
control mechanism.

Acknowledgment

The authors are extremely grateful to the anonymous referees for having provided the
many valuable comments and helpful suggestions which helped to improve the presentation
of this paper.

References

[1] F. Altiparmak, M. Gen, L. Lin, I. Karaoglan, A steady-state genetic algorithm for multi-product sup-
ply chain network design, Computers & Industrial Engineering, 56, (2009), 521–537.

[2] A. Costa, G. Celano, S. Fichera, E.Trovato, A new efficient encoding/decoding procedure for the design
of a supply chain network with genetic algorithms, Computers & Industrial Engineering, 59(4),
(2010), 986–999.

[3] M. Gen, R. Cheng, Genetic algorithms and engineering optimization. New York: John Wiley and
Sons, (2000).

[4] M .Gen, F. Altiparmak,L. Lin, A genetic algorithm for two-stage transportation problem using pri-
ority-based encoding. OR Spectrum, 28, (2006), 337–354.

[5] M. Hajiaghaei-Keshteli, The allocation of customers to potential distribution centers in supply chain
networks: GA and AIA approaches, Applied Soft Computing, 11(2), (2010), 2069–2078.

[6] J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann
Arbor, (1975).

[7] M. Kaya, The effects of a new selection operator on the performance of a genetic algorithm, Applied
Mathematics and Computation, 217(19), (2011), 7669–6778.

[8] M. Kaya, The effects of two new crossover operators on genetic algorithm performance, Applied Soft
Computing 11(1), (2011), 881–890.

[9] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Program. Spring-Verlag, (1994).

200 Rafsanjani et al.

[10] B. L. Miller, D. E. Goldberg, Genetic Algorithms, Tournament Selection, and the Effects of Noise,
Complex Systems, 9, (1995), 193–212.

[11] M. S. Pishvaee, M .Rabbani, A graph theoretic-based heuristic algorithm for responsive supply chain
network design with direct and indirect shipment. Advances in Engineering Software, 42(3), (2010),
57–63.

[12] S. N. Sivanandam, S. N. Deepa, Introduction to Genetic Algorithms, New York: Springer Berlin
Heidelberg, (2008).

[13] A. Syarif, Y. Yun, M. Gen. Study on multi-stage logistics chain network: A spanning tree-based genet-
ic algorithm approach. Computers & Industrial Engineering, 43(1-2), (2002), 299–314.

[14] L. C. Wang, T. L. Chen, Y.Y. Chen, H. Y. Miao, S. C. Lin, S. T. Chen, Genetic algorithm approach
for multi–objective optimization of closed–loop supply chain network, Proceedings of the Institute
of Industrial Engineers Asian Conference 2013, (2013), 149–156.

[15] M. J. Yao, H. W. Hsu, A new spanning tree–based genetic algorithm for the design of multi–stage
supply chain networks with nonlinear transportation costs, Optimization and Engineering, 10(2),
(2009), 219–237.

[16] W. C. Yeh, A hybrid heuristic algorithm for the multistage supply chain network problem, Int J
AdvManufTechnol, 26(5–6), (2005), 675–685.

[17] Y. Yun, C. Moon, D. Kim, Hybrid genetic algorithm with adaptive local search scheme for solving
multistage-based supply chain problems, Computers & Industrial Engineering, 56(3), (2009),
821–838.

201CUJSE 10 (2013), No. 2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

