Çankaya Üniversitesi Fen-Edebiyat Fakültesi, Journal of Arts and Sciences Sayı: 11 / Mayıs 2009

Single and Multiple Positive Solutions for Nonlinear Discrete Problems

İsmail Yaslan*

Abstract

In this paper, we discuss the existence of single and multiple positive solutions to the nonlinear second order discrete three-point boundary value problems. To prove the main results, we will use the well-known result of the fixed point theorems in cones.

Key words: Boundary value problems; Difference equations; Fixed point theorems; Positive solutions.

Özet

Bu çalışmada, lineer olmayan ikinci mertebe diskret üç-nokta sınır değer problemleri için tek ve birden fazla pozitif çözümlerin varlığı incelenecek. Ana sonuçları ispatlamak için konilerde sabit nokta teoremlerinin iyi bilinen sonuçlarını kullanacağız.

Anahtar Kelimeler: Sınır değer problemleri; Fark denklemleri; Sabit nokta teoremleri; Pozitif çözümler.

1. Introduction

There are many authors who studied the existence of solutions to second order twopoint boundary value problems on difference equations. For some recent results, we refer the reader to [2], [3], [4], [5], [7], [9], [10]. However, to the best of the author's knowledge, there are few results for the existence of solutions to second order threepoint boundary value problems on difference equations.

^{*} Pamukkale University, Department of Mathematics, 20070, Denizli, Turkey iyaslan@pau.edu.tr

In paper [1], Agarwal, Thompson and Tisdell studied existence results for solutions to second-order discrete boundary value problem

 $\Delta^2 y_{k+1} = f(x_k, y_k, \Delta y_k), \quad k = 1, 2, ..., n-1$

 $G(y_0, y_n, y_d) = (0, 0), \ d \in \{1, ..., n-1\}$

where *f* and *G* are continuous.

In paper [11], Zhang and Medina studied existence of positive solutions for the nonlinear discrete three-point boundary value problem

$$\Delta^2 x_{k-1} + f(x_k) = 0, \ k = 1, 2, ..., n$$

$$x_0 = 0, x_{n+1} - ax_l = b$$

where $n \in \{2,3,\ldots\}$, $l \in \{1,2,\ldots,n\}$, a and b are positive numbers and $f \in C(\mathbb{R}_+,\mathbb{R}_+)$.

We are interested in the existence of one or two positive solutions of the following three-point boundary value problem:

$$\begin{cases} \Delta^2 y(n) + h(n) f(n, y(n+1)) = 0, \ n \in [a, c] \\ \Delta y(a) = 0, \ \alpha y(c+1) + \beta \Delta y(c+1) = \Delta y(b) \end{cases}$$
(1)

where a < b < c are distinct integers, $\alpha > 0$, $\beta > 1$ and Δ denotes the forward difference operator defined by $\Delta y(n) = y(n+1) - y(n)$. Additionally, throughout the paper we assume $h:[a,c] \rightarrow [0,\infty)$ is continuous such that $h(n_0) > 0$ for at least one $n_0 \in [b,c]$, $f:[a,c] \times [0,\infty) \rightarrow [0,\infty)$ is continuous.

Problem (1) is equivalent to the problem

$$y(n+2) - 2y(n+1) + y(n) + h(n)f(n, y(n+1)) = 0, n \in [a,c]$$

$$y(a+1) = y(a), \beta y(c+2) + (\alpha - \beta)y(c+1) = y(b+1) - y(b).$$

2. Preliminaries

Let G(n,s) be Green's function for the boundary value problem

 $\Delta^2 y(n) = 0, \ n \in [a, c] \subset \mathbb{Z}$ $\Delta y(a) = 0, \ \alpha y(c+1) + \beta \Delta y(c+1) = \Delta y(b).$

A direct calculation gives

$$G(n,s) = \begin{cases} s \in [a,b] \begin{cases} c + \frac{\beta - 1}{\alpha} + 1 - n & , s + 1 \le n \\ c - s + \frac{\beta - 1}{\alpha} & , n \le s \end{cases} \\ s \in [b,c] \begin{cases} c + \frac{\beta}{\alpha} + 1 - n & , s + 1 \le n \\ c - s + \frac{\beta}{\alpha} & , n \le s \end{cases} \end{cases}$$
(2)

80

To state and prove the main results of this paper, we need the following lemmas.

Lemma 1 Let $\alpha > 0$, $\beta > 1$. Then the Green's function G(n,s) in (2) satisfies the following inequality

$$G(n,s) \ge \frac{n-a}{c-a+1} G(c+1,s)$$

For $(n,s) \in [a,c+1] \times [a,c]$.

Proof. We proceed sequentially on the branches of the Green's function G(n,s) in (2). (*i*) For $s \in [a,b]$ and $s+1 \le n$, we obtain

$$G(n,s) = c + \frac{\beta - 1}{\alpha} + 1 - n$$

and

$$\frac{G(n,s)}{G(c+1,s)} = \frac{c-n+1}{\frac{\beta-1}{2}} + 1 > \frac{n-a}{c-a+1}.$$

(*ii*) Let $s \in [a,b]$ and $n \le s$. Then

$$G(n,s) = c - s + \frac{\beta - 1}{\alpha}$$

and

$$\frac{G(n,s)}{G(c+1,s)} = 1 > \frac{n-a}{c-a+1}.$$

(*iii*) Take $s \in [b,c]$ and $s+1 \le n$. Then

 $G(n,s) = c + \frac{\beta}{\alpha} + 1 - n$

and

$$\frac{G(n,s)}{G(c+1,s)} = \frac{c-n+1}{\frac{\beta}{\alpha}} + 1 \ge \frac{n-a}{c-a+1}$$

(*iv*) Fix $s \in [b, c]$ and $n \le s$. Then

$$G(n,s) = c - s + \frac{\beta}{\alpha}$$

and

$$\frac{G(n,s)}{G(c+1,s)} = 1 > \frac{n-a}{c-a+1}.$$

Lemma 2 Assume $\alpha > 0$, $\beta > 1$. Then the Green's function G(n,s) in (2) satisfies $0 < G(n,s) \le G(s+1,s)$ for $(n,s) \in [a,c+1] \times [a,c]$. **Proof.** Since for $s \in [a,b]$

 $G(c+1,s) = \frac{\beta - 1}{\alpha} > 0$ and for $s \in (b, c+1]$

$$G(c+1,s) = \frac{p}{\alpha} > 0,$$

we obtain G(n,s) > 0 from Lemma 1. To show that $G(n,s) \le G(s+1,s)$, we again deal with the branches of the Green's function G(n,s) in (2).

- (*i*) For $s \in [a,b]$ and $s+1 \le n \le c+1$, G(n,s) is decreasing in *n* and $G(n,s) \le G(s+1,s)$.
- (*ii*) Let $s \in [a,b]$ and $a \le n \le s$. Then it is obvious that G(n,s) = G(s+1,s).
- (*iii*) Take $s \in (b,c]$ and $s+1 \le n \le c+1$. Since G(n,s) is decreasing in n, $G(n,s) \le G(s+1,s)$.
- (*iv*) Fix $s \in (b,c]$ and $a \le n \le s$. Then it is clear that G(n,s) = G(s+1,s).

Lemma 3 Suppose $\alpha > 0$, $\beta > 1$ and $s \in [a,c]$. Then the Green's function G(n,s) in (2) satisfies

$$\min_{n \in [b,c+1]} G(n,s) \ge k \|G(.,s)\|_{2}$$

where

$$k = \frac{\beta - 1}{\alpha(c - a) + \beta - 1} \tag{3}$$

and ||.|| is defined by $||x|| = \max_{n \in [a,c+1]} |x(n)|$.

Proof. Since the Green's function G(n,s) in (2) is nonincreasing in *n*, we get $\min_{n \in [b,c+1]} G(n,s) \ge G(c+1,s)$. Moreover, it is obvious that ||G(.,s)|| = G(s+1,s) for $s \in [a,c]$ by Lemma 2. Then we have from the branches in (2) that

 $G(c+1,s) \ge kG(s+1,s).$

Let the Banach space $\mathcal{B} = \{y : [a, c+1] \to \mathbb{R}\}$ with the norm $||y|| = \max_{n \in [a, c+1]} |y(n)|$ and define the cone $P \subset \mathcal{B}$ by

$$P = \left\{ y \in \mathcal{B} : y(n) \ge 0, \quad \min_{n \in [b, c+1]} y(n) \ge k \left\| y \right\| \right\}$$

$$(4)$$

where k is given in (3).

(1) is equivalent to the nonlinear integral equation

$$y(n) = \sum_{s=a}^{c} G(n,s)h(s)f(s,y(s+1)).$$
(5)

We can define the operator $A: P \to \mathcal{B}$ by

$$Ay(n) = \sum_{s=a}^{c} G(n,s)h(s)f(s,y(s+1)),$$
(6)

where $y \in P$. If $y \in P$, then by Lemma 3 we have

ne

$$\min_{\{[b,c+1]\}} Ay(n) = \sum_{s=a} \min_{n \in [b,c+1]} G(n,s)h(s)f(s, y(s+1))$$
$$= k \sum_{s=a}^{c} \max_{n \in [a,c+1]} |G(n,s)|h(s)f(s, y(s+1))$$
$$= k ||Ay||.$$

Thus $Ay \in P$ and therefore $AP \subset P$. In addition, $A: P \to P$ is completely continuous by a standard application of the Arzela-Ascoli Theorem.

We will apply the following well-known result of the fixed point theorems to prove the existence of one or two positive solutions to the (1).

Lemma 4 [6],[8] Let *P* be a cone in a Banach space \mathcal{B} , and let *D* be an open, bounded subset of \mathcal{B} with $D_p := D \cap P \neq \emptyset$ and $\overline{D}_p \neq P$. Assume that $A: \overline{D}_p \to P$ is a compact map such that $y \neq Ay$ for $y \in D_p$. The following results hold.

- (i) If $||Ay|| \le ||y||$ for $y \in D_p$, then $i_p(A, D_p) = 1$.
- (*ii*) If there exists an $q \in P \setminus \{0\}$ such that $y \neq Ay + \lambda q$ for all $y \in D_p$ and all $\lambda > 0$, then $i_p(A, D_p) = 0$.
- (*iii*) Let U be open in P such that $\overline{U}_p \subset D_p$. If $i_p(A, D_p) = 1$ and $i_p(A, U_p) = 0$, then A has a fixed point in $D_p \setminus \overline{U}_p$. The same result holds if $i_p(A, D_p) = 0$ and $i_p(A, U_p) = 1$.

3. Single and Multiple Positive Solutions

For the cone *P* given in (4) and any positive real number *r*, define the convex set $P_r := \{y \in P : ||y|| < r\}$

and the set

$$\Omega_r \coloneqq \Big\{ y \in P : \min_{n \in [b,c+1]} y(n) < kr \Big\}.$$

The following results are proved in [3].

Lemma 5 The set Ω_r has the following properties.

(*i*) Ω_r is open relative to *P*.

(*ii*) $P_{kr} \subset \Omega_r \subset P_r$.

- (*iii*) $y \in \partial \Omega_r$ if and only if $\min_{n \in [b, c+1]} y(n) = kr$.
- (*iv*) If $y \in \partial \Omega_r$, then $kr \le y(n) \le r$ for $n \in [b, c+1]$.

For convenience, we introduce the following notations. Let

$$\begin{split} f_{kr}^{r} &\coloneqq \min\left\{\min_{n\in[b,c+1]}\frac{f\left(n,y\right)}{r} \colon y\in[kr,r]\right\}\\ f_{0}^{r} &\coloneqq \max\left\{\max_{n\in[a,c+1]}\frac{f\left(n,y\right)}{r} \colon y\in[0,r]\right\}\\ f^{a} &\coloneqq \limsup_{y\to a}\max_{n\in[a,c+1]}\frac{f\left(n,y\right)}{y}\\ f_{a} &\coloneqq \liminf_{y\to a}\min_{n\in[b,c+1]}\frac{f\left(n,y\right)}{y} \ \left(a\coloneqq 0^{+},\infty\right). \end{split}$$

In the next two lemmas, we give conditions on f guaranteeing that $i_p(A, P_r) = 1$ or $i_p(A, \Omega_r) = 0$.

Lemma 6 Let

$$L \coloneqq \sum_{s=a}^{c} G(s+1,s)h(s).$$
⁽⁷⁾

If the conditions

$$f_0^r \leq \frac{1}{L}$$
 and $y \neq Ay$ for $y \in \partial P_r$,

hold, then $i_P(A, P_r) = 1$.

Proof. If $y \in \partial P_r$, then using Lemma 2, we have

$$Ay(n) = \sum_{s=a}^{c} G(n,s)h(s)f(s,y(s+1))$$

$$\leq ||f(.,y)|| \sum_{s=a}^{c} G(s+1,s)h(s)$$

$$\leq r = ||y||$$

It follows that $||Ay|| \le ||y||$ for $y \in \partial P_r$. By Lemma 4(*i*), we get $i_P(A, P_r) = 1$.

Lemma 7 Let

$$N := \left(\sum_{s=b}^{c} G(c+1,s)h(s)\right)^{-1}$$
(8)

If the conditions

 $f_{kr}^r \ge Nk$ and $y \ne Ay$ for $y \in \partial \Omega_r$,

hold, then $i_p(A, \Omega_r) = 0$.

Proof. Let $q(n) \equiv 1$ for $n \in [a, c+1]$, then $q \in \partial P_1$. Assume there exist $y_0 \in \partial \Omega_r$ and $\lambda_0 > 0$ such that $y_0 = Ay_0 + \lambda_0 q$. Then for $n \in [b, c+1]$ we have

$$y_0(n) = Ay_0(n) + \lambda_0 q(n)$$

$$\geq \sum_{s=b}^{c} G(n,s)h(s)f(s,y_0(s+1)) + \lambda_0$$

$$\geq Nkr \sum_{s=b}^{c} G(c+1,s)h(s) + \lambda_0$$

$$= kr + \lambda_0$$

But this implies that $kr \ge kr + \lambda_0$, a contradiction. Hence, for $y_0 \in \partial \Omega_r$ and $\lambda_0 > 0$, so by Lemma 4(*ii*), we get $i_p(A, \Omega_r) = 0$.

Theorem 8 Let k, L, and N be as in (3), (7), and (8), respectively. Suppose that one of the following conditions holds.

(C1) There exist constants $c_1, c_2, c_3 \in \mathbb{R}$ with $0 < c_1 < kc_2$ and $c_2 < c_3$ such that

$$f_0^{c_1}, f_0^{c_3} \le \frac{1}{L}, f_{kc_2}^{c_2} \ge Nk$$
, and $y \ne Ay$ for $y \in \partial \Omega_{c_2}$

(C2) There exist constants $c_1, c_2, c_3 \in \mathbb{R}$ with $0 < c_1 < c_2 < kc_3$ such that

$$f_{kc_1}^{c_1}, f_{kc_3}^{c_3} \ge Nk, f_0^{c_2} \le \frac{1}{L}$$
, and $y \ne Ay$ for $y \in \partial P_{c_2}$.

Then (1) has two positive solutions. Additionally, if in (C1) the condition $f_0^{c_1} \le \frac{1}{L}$ is replaced

by $f_0^{c_1} < \frac{1}{L}$, then (1) has a third positive solution in P_{c_1} .

Proof. Assume that (C1) holds. We show that either *A* has a fixed point in ∂P_{c_1} or in $\Omega_{c_2} \setminus \overline{P}_{c_1}$. If $y \neq Ay$ for $y \in \partial P_{c_1}$, then by Lemma 6, we have $i_p(A, P_{c_1}) = 1$. Since $f_{kc_2}^{c_2} \ge Nk$ and $y \neq Ay$ for $y \in \partial \Omega_{c_2}$, from Lemma 7 we get $i_p(A, \Omega_{c_2}) = 0$. By Lemma 5(*ii*) and $c_1 < kc_2$, we have $\overline{P}_{c_1} \subset \overline{P}_{kc_2} \subset \Omega_{c_2}$. From Lemma 4(*iii*), *A* has a fixed point in $\Omega_{c_2} \setminus \overline{P}_{c_1}$. If $y \neq Ay$ for $y \in \partial P_{c_3}$, then from Lemma 6 $i_p(A, P_{c_3}) = 1$. By Lemma 5(*ii*) and Lemma 4(*iii*), *A* has a fixed point in $P_{c_1} \setminus \overline{\Omega}_{c_2}$. The proof is similar when (C2) holds and we omit it here.

Corollary 9 If there exist a constant c > 0 such that one of the following conditions holds:

(H1)
$$0 \le f^0, f^\infty < \frac{1}{L}, f_{kc}^c \ge Nk$$
, and $y \ne Ay$ for $y \in \partial\Omega_c$
(H2) $N < f_0, f_\infty \le \infty, f_0^c \le \frac{1}{L}$, and $y \ne Ay$ for $y \in \partial P_c$.

Then (1) has two positive solutions.

Proof. We show that (H1) implies (C1). It is easy to verify that $0 \le f^0 < \frac{1}{L}$ implies that there exists $c_1 \in (0, kc)$ such that $f_0^{c_1} < \frac{1}{L}$. Let $m \in \left(f^{\infty}, \frac{1}{L}\right)$. Then there exists $c_2 > c$ such that

$$\max_{n \in [a,c+1]} f(n,y) \le ky \text{ for } y \in [c_2,\infty) \text{ because } 0 \le f^{\infty} < \frac{1}{L}. \text{ Let}$$
$$n = \max\left\{\max_{n \in [a,c+1]} f(n,y) : 0 \le y \le c_2\right\} \text{ and } c_4 > \max\left\{\frac{n}{\frac{1}{L}-m}, \frac{1}{L}\right\}$$

Then we have

 $\max_{n \in [a,c+1]} f(n, y) \le my + n \le mc_4 + n < \frac{1}{L}c_4 \text{ for } y \in [0, c_4].$ This implies that $f_0^{c_4} < \frac{1}{L}$ and (C1) holds. Similarly, (H2) implies (C2).

As a special case of Theorem 8 and Corollary 9, we have the following two results.

Theorem 10 Assume that one of the following conditions holds.

(C3) There exist constants $c_1, c_2 \in \mathbb{R}$ with $0 < c_1 < kc_2$ such that

$$f_0^{c_1} \le \frac{1}{L}$$
 and $f_{kc_2}^{c_2} \ge Nk$.

(C4) There exist constants $c_1, c_2 \in \mathbb{R}$ with $0 < c_1 < c_2$ such that

$$f_{kc_1}^{c_1} \ge Nk \text{ and } f_0^{c_2} \le \frac{1}{L}.$$

Then (1) has a positive solution.

Corollary 11 Assume that one of the following conditions holds:

(H3)
$$0 \le f^0 < \frac{1}{L}$$
 and $N < f_\infty \le \infty$.
(H4) $0 \le f^\infty < \frac{1}{L}$ and $N < f_0 \le \infty$.

Then (1) has a positive solution.

References

- R. P. Agarwal, H. B. Thompson and C. C. Tisdell, Three point boundary value problems for second-order discrete equations, Comput. Math. Appl., 45 (2003), 1429-1435.
- D. R. Anderson, I. Rachunkova and C. C. Tisdell, Solvability of discrete Neumann boundary value problems, J. Math. Anal. Appl., 331 (2007), 736-741.
- D. Bai and Y. Xu, Nontrivial solutions of boundary value problems of second-order difference equations, J. Math. Anal. Appl., 326 (2007), 297-302.
- A. Cabada, A. Iannizzotto and S. Tersion, Multiple solutions for discrete boundary value problems, J. Math. Anal. Appl., 356 (2009), 293-307.

- 5. X. Cai and J. Yu, Existence theorems for second-order discrete boundary value problems, J. Math. Anal. Appl., 320 (2006), 649-661.
- D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, San Diego, 1988.
- 7. X. He and X. Wu, Existence and multiplicity of solutions for nonlinear second-order difference boundary value problems, Comput. Math. Appl., 57 (2009),1-8.
- K.Q. Lan, Multiple positive solutions of semilinear differential equations with singularities, J. London Math. Soc., 63 (2001), 690-704.
- 9. H. Liang and P. Weng, Existence and multiple solutions for a second-order difference boundary value problem via critical point theory, J. Math. Anal. Appl., 326 (2007), 511-520.
- R. Ma and H. Ma, Existence of sign-changing periodic solutions of second-order difference equations, Appl. Math. Comput., 203 (2008), 463-470.
- G. Zhang, and R. Medina, Three-point boundary value problems for difference equations, Comput. Math Appl., 48, (2004) 1791-1799.