# Single and Multiple Positive Solutions for Nonlinear Discrete Problems 

İsmail Yaslan*


#### Abstract

In this paper, we discuss the existence of single and multiple positive solutions to the nonlinear second order discrete three-point boundary value problems. To prove the main results, we will use the well-known result of the fixed point theorems in cones


Key words: Boundary value problems; Difference equations; Fixed point theorems; Positive solutions.

## Özet

Bu çalışmada, lineer olmayan ikinci mertebe diskret üç-nokta sınır değer problemleri için tek ve birden fazla pozitif çözümlerin varlığı incelenecek. Ana sonuçları ispatlamak için konilerde sabit nokta teoremlerinin iyi bilinen sonuçlarını kullanacağız.

Anahtar Kelimeler: Sınır değer problemleri; Fark denklemleri; Sabit nokta teoremleri; Pozitif çözümler.

## 1. Introduction

There are many authors who studied the existence of solutions to second order twopoint boundary value problems on difference equations. For some recent results, we refer the reader to [2], [3], [4], [5], [7], [9], [10]. However, to the best of the author's knowledge, there are few results for the existence of solutions to second order threepoint boundary value problems on difference equations.

[^0]In paper [1], Agarwal, Thompson and Tisdell studied existence results for solutions to second-order discrete boundary value problem

$$
\begin{aligned}
& \Delta^{2} y_{k+1}=f\left(x_{k}, y_{k}, \Delta y_{k}\right), \quad k=1,2, \ldots, n-1 \\
& G\left(y_{0}, y_{n}, y_{d}\right)=(0,0), d \in\{1, \ldots, n-1\}
\end{aligned}
$$

where $f$ and $G$ are continuous.
In paper [11], Zhang and Medina studied existence of positive solutions for the nonlinear discrete three-point boundary value problem

$$
\begin{aligned}
& \Delta^{2} x_{k-1}+f\left(x_{k}\right)=0, \quad k=1,2, \ldots, n \\
& x_{0}=0, x_{n+1}-a x_{l}=b
\end{aligned}
$$

where $n \in\{2,3, \ldots\}, l \in\{1,2, \ldots, n\}, a$ and $b$ are positive numbers and $f \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$.
We are interested in the existence of one or two positive solutions of the following three-point boundary value problem:

$$
\left\{\begin{array}{l}
\Delta^{2} y(n)+h(n) f(n, y(n+1))=0, n \in[a, c]  \tag{1}\\
\Delta y(a)=0, \alpha y(c+1)+\beta \Delta y(c+1)=\Delta y(b)
\end{array}\right.
$$

where $a<b<c$ are distinct integers, $\alpha>0, \beta>1$ and $\Delta$ denotes the forward difference operator defined by $\Delta y(n)=y(n+1)-y(n)$. Additionally, throughout the paper we assume $h:[a, c] \rightarrow[0, \infty)$ is continuous such that $h\left(n_{0}\right)>0$ for at least one $n_{0} \in[b, c]$, $f:[a, c] \times[0, \infty) \rightarrow[0, \infty)$ is continuous.

Problem (1) is equivalent to the problem

$$
\begin{aligned}
& y(n+2)-2 y(n+1)+y(n)+h(n) f(n, y(n+1))=0, n \in[a, c] \\
& y(a+1)=y(a), \beta y(c+2)+(\alpha-\beta) y(c+1)=y(b+1)-y(b) .
\end{aligned}
$$

## 2. Preliminaries

Let $G(n, s)$ be Green's function for the boundary value problem

$$
\Delta^{2} y(n)=0, n \in[a, c] \subset \mathbb{Z}
$$

$\Delta y(a)=0, \alpha y(c+1)+\beta \Delta y(c+1)=\Delta y(b)$.
A direct calculation gives

To state and prove the main results of this paper, we need the following lemmas.
Lemma 1 Let $\alpha>0, \beta>1$. Then the Green's function $G(n, s)$ in (2) satisfies the following inequality

$$
G(n, s) \geq \frac{n-a}{c-a+1} G(c+1, s)
$$

For $(n, s) \in[a, c+1] \times[a, c]$.
Proof. We proceed sequentially on the branches of the Green's function $G(n, s)$ in (2).
(i) For $s \in[a, b]$ and $s+1 \leq n$, we obtain

$$
G(n, s)=c+\frac{\beta-1}{\alpha}+1-n
$$

and

$$
\frac{G(n, s)}{G(c+1, s)}=\frac{c-n+1}{\frac{\beta-1}{\alpha}}+1>\frac{n-a}{c-a+1} .
$$

(ii) Let $s \in[a, b]$ and $n \leq s$. Then

$$
G(n, s)=c-s+\frac{\beta-1}{\alpha}
$$

and

$$
\frac{G(n, s)}{G(c+1, s)}=1>\frac{n-a}{c-a+1} .
$$

(iii) Take $s \in[b, c]$ and $s+1 \leq n$. Then

$$
G(n, s)=c+\frac{\beta}{\alpha}+1-n
$$

and

$$
\frac{G(n, s)}{G(c+1, s)}=\frac{c-n+1}{\frac{\beta}{\alpha}}+1 \geq \frac{n-a}{c-a+1} .
$$

(iv) Fix $s \in[b, c]$ and $n \leq s$. Then

$$
G(n, s)=c-s+\frac{\beta}{\alpha}
$$

and

$$
\frac{G(n, s)}{G(c+1, s)}=1>\frac{n-a}{c-a+1} .
$$

Lemma 2 Assume $\alpha>0, \beta>1$. Then the Green's function $G(n, s)$ in (2) satisfies

$$
0<G(n, s) \leq G(s+1, s)
$$

for $(n, s) \in[a, c+1] \times[a, c]$.

Proof. Since for $s \in[a, b]$

$$
G(c+1, s)=\frac{\beta-1}{\alpha}>0
$$

and for $s \in(b, c+1]$

$$
G(c+1, s)=\frac{\beta}{\alpha}>0,
$$

we obtain $G(n, s)>0$ from Lemma 1. To show that $G(n, s) \leq G(s+1, s)$, we again deal with the branches of the Green's function $G(n, s)$ in (2).
(i) For $s \in[a, b]$ and $s+1 \leq n \leq c+1, G(n, s)$ is decreasing in $n$ and $G(n, s) \leq G(s+1, s)$.
(ii) Let $s \in[a, b]$ and $a \leq n \leq s$. Then it is obvious that $G(n, s)=G(s+1, s)$.
(iii) Take $s \in(b, c]$ and $s+1 \leq n \leq c+1$. Since $G(n, s)$ is decreasing in $n$, $G(n, s) \leq G(s+1, s)$.
(iv) Fix $s \in(b, c]$ and $a \leq n \leq s$. Then it is clear that $G(n, s)=G(s+1, s)$.

Lemma 3 Suppose $\alpha>0, \beta>1$ and $s \in[a, c]$. Then the Green's function $G(n, s)$ in (2) satisfies

$$
\min _{n \in b, c+1]} G(n, s) \geq k\|G(., s)\|,
$$

where

$$
\begin{equation*}
k=\frac{\beta-1}{\alpha(c-a)+\beta-1} \tag{3}
\end{equation*}
$$

and $\|$.$\| is defined by \|x\|=\max _{n \in[a, c+1]}|x(n)|$.
Proof. Since the Green's function $G(n, s)$ in (2) is nonincreasing in $n$, we get $\min _{n \in[b, c+1]} G(n, s) \geq G(c+1, s)$. Moreover, it is obvious that $\|G(., s)\|=G(s+1, s)$ for $s \in[a, c]$ by Lemma 2. Then we have from the branches in (2) that

$$
G(c+1, s) \geq k G(s+1, s)
$$

Let the Banach space $\mathcal{B}=\{y:[a, c+1] \rightarrow \mathbb{R}\}$ with the norm $\|y\|=\max _{n \in[a, c+1]}|y(n)|$ and define the cone $P \subset \mathcal{B}$ by

$$
\begin{equation*}
P=\left\{y \in \mathcal{B}: y(n) \geq 0, \min _{n \in[b, c+1]} y(n) \geq k\|y\|\right\} \tag{4}
\end{equation*}
$$

where $k$ is given in (3).
(1) is equivalent to the nonlinear integral equation

$$
\begin{equation*}
y(n)=\sum_{s=a}^{c} G(n, s) h(s) f(s, y(s+1)) \tag{5}
\end{equation*}
$$

We can define the operator $A: P \rightarrow \mathcal{B}$ by

$$
\begin{equation*}
A y(n)=\sum_{s=a}^{c} G(n, s) h(s) f(s, y(s+1)), \tag{6}
\end{equation*}
$$

where $y \in P$. If $y \in P$, then by Lemma 3 we have

$$
\begin{aligned}
\min _{n \in[b, c+1]} A y(n) & =\sum_{s=a}^{c} \min _{n \in[b, c+1]} G(n, s) h(s) f(s, y(s+1)) \\
& =k \sum_{s=a}^{c} \max _{n \in[a, c+1]}|G(n, s)| h(s) f(s, y(s+1)) \\
& =k\|A y\| .
\end{aligned}
$$

Thus $A y \in P$ and therefore $A P \subset P$. In addition, $A: P \rightarrow P$ is completely continuous by a standard application of the Arzela-Ascoli Theorem.

We will apply the following well-known result of the fixed point theorems to prove the existence of one or two positive solutions to the (1).

Lemma $4[6],[8]$ Let $P$ be a cone in a Banach space $\mathcal{B}$, and let $D$ be an open, bounded subset of $\mathcal{B}$ with $D_{P}:=D \cap P \neq \varnothing$ and $\bar{D}_{P} \neq P$. Assume that $A: \bar{D}_{P} \rightarrow P$ is a compact map such that $y \neq A y$ for $y \in D_{P}$. The following results hold.
(i) If $\|A y\| \leq\|y\|$ for $y \in D_{P}$, then $i_{P}\left(A, D_{P}\right)=1$.
(ii) If there exists an $q \in P \backslash\{0\}$ such that $y \neq A y+\lambda q$ for all $y \in D_{P}$ and all $\lambda>0$, then $i_{P}\left(A, D_{P}\right)=0$.
(iii) Let $U$ be open in $P$ such that $\bar{U}_{P} \subset D_{P}$. If $i_{P}\left(A, D_{P}\right)=1$ and $i_{P}\left(A, U_{P}\right)=0$, then A has a fixed point in $D_{P} \backslash \bar{U}_{P}$. The same result holds if $i_{P}\left(A, D_{P}\right)=0$ and $i_{P}\left(A, U_{P}\right)=1$.

## 3. Single and Multiple Positive Solutions

For the cone $P$ given in (4) and any positive real number $r$, define the convex set

$$
P_{r}:=\{y \in P:\|y\|<r\}
$$

and the set

$$
\Omega_{r}:=\left\{y \in P: \min _{n \in[b, c+1]} y(n)<k r\right\} .
$$

The following results are proved in [3].
Lemma 5 The set $\Omega_{r}$ has the following properties.
(i) $\Omega_{r}$ is open relative to $P$.
(ii) $P_{k r} \subset \Omega_{r} \subset P_{r}$.
(iii) $y \in \partial \Omega_{r}$ if and only if $\min _{n \in[b, c+1]} y(n)=k r$.
(iv) If $y \in \partial \Omega_{r}$, then $k r \leq y(n) \leq r$ for $n \in[b, c+1]$.

For convenience, we introduce the following notations. Let

$$
\begin{aligned}
f_{k r}^{r} & :=\min \left\{\min _{n \in[b, c+1]} \frac{f(n, y)}{r}: y \in[k r, r]\right\} \\
f_{0}^{r} & :=\max \left\{\max _{n \in[a, c+1]} \frac{f(n, y)}{r}: y \in[0, r]\right\} \\
f^{a} & :=\limsup _{y \rightarrow a} \max _{n \in[a, c+1]} \frac{f(n, y)}{y} \\
f_{a} & :=\liminf _{y \rightarrow a} \min _{n \in[b, c+1]} \frac{f(n, y)}{y}\left(a:=0^{+}, \infty\right) .
\end{aligned}
$$

In the next two lemmas, we give conditions on $f$ guaranteeing that $i_{p}\left(A, P_{r}\right)=1$ or $i_{p}\left(A, \Omega_{r}\right)=0$.

## Lemma 6 Let

$$
\begin{equation*}
L:=\sum_{s=a}^{c} G(s+1, s) h(s) . \tag{7}
\end{equation*}
$$

If the conditions

$$
f_{0}^{r} \leq \frac{1}{L} \text { and } y \neq A y \text { for } y \in \partial P_{r},
$$

hold, then $i_{P}\left(A, P_{r}\right)=1$.
Proof. If $y \in \partial P_{r}$, then using Lemma 2, we have

$$
\begin{aligned}
A y(n) & =\sum_{s=a}^{c} G(n, s) h(s) f(s, y(s+1)) \\
& \leq\|f(., y)\| \sum_{s=a}^{c} G(s+1, s) h(s) \\
& \leq r=\|y\|
\end{aligned}
$$

It follows that $\|A y\| \leq\|y\|$ for $y \in \partial P_{r}$. By Lemma $4(i)$, we get $i_{p}\left(A, P_{r}\right)=1$.

## Lemma 7 Let

$$
\begin{equation*}
N:=\left(\sum_{s=b}^{c} G(c+1, s) h(s)\right)^{-1} \tag{8}
\end{equation*}
$$

If the conditions
$f_{k r}^{r} \geq N k$ and $y \neq A y$ for $y \in \partial \Omega_{r}$,
hold, then $i_{P}\left(A, \Omega_{r}\right)=0$.
Proof. Let $q(n) \equiv 1$ for $n \in[a, c+1]$, then $q \in \partial P_{1}$. Assume there exist $y_{0} \in \partial \Omega_{r}$ and $\lambda_{0}>0$ such that $y_{0}=A y_{0}+\lambda_{0} q$. Then for $n \in[b, c+1]$ we have

$$
y_{0}(n)=A y_{0}(n)+\lambda_{0} q(n)
$$

$$
\begin{aligned}
& \geq \sum_{s=b}^{c} G(n, s) h(s) f\left(s, y_{0}(s+1)\right)+\lambda_{0} \\
& \geq N k r \sum_{s=b}^{c} G(c+1, s) h(s)+\lambda_{0} \\
& =\mathrm{kr}+\lambda_{0}
\end{aligned}
$$

But this implies that $\mathrm{kr} \geq \mathrm{kr}+\lambda_{0}$, a contradiction. Hence, for $y_{0} \in \partial \Omega_{r}$ and $\lambda_{0}>0$, so by Lemma 4(ii), we get $i_{P}\left(A, \Omega_{r}\right)=0$.

Theorem 8 Let $k, L$, and $N$ be as in (3), (7), and (8), respectively. Suppose that one of the following conditions holds.
(C1) There exist constants $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ with $0<c_{1}<k c_{2}$ and $c_{2}<c_{3}$ such that

$$
f_{0}^{c_{1}}, f_{0}^{c_{3}} \leq \frac{1}{L}, f_{k c_{2}}^{c_{2}} \geq N k, \text { and } y \neq A y \text { for } y \in \partial \Omega_{c_{2}} .
$$

(C2) There exist constants $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ with $0<c_{1}<c_{2}<k c_{3}$ such that

$$
f_{k c_{1}}^{c_{1}}, f_{k c_{3}}^{c_{3}} \geq N k, f_{0}^{c_{2}} \leq \frac{1}{L}, \text { and } y \neq A y \text { for } y \in \partial P_{c_{2}} .
$$

Then (1) has two positive solutions. Additionally, if in (C1) the condition $f_{0}^{c_{1}} \leq \frac{1}{L}$ is replaced by $f_{0}^{c_{1}}<\frac{1}{L}$, then (1) has a third positive solution in $P_{c_{1}}$.
Proof. Assume that (C1) holds. We show that either $A$ has a fixed point in $\partial P_{c_{1}}$ or in $\Omega_{c_{2}} \backslash \bar{P}_{c_{1}}$. If $y \neq A y$ for $y \in \partial P_{c_{1}}$, then by Lemma 6, we have $i_{P}\left(A, P_{c_{1}}\right)=1$. Since $f_{k c_{2}}^{c_{2}} \geq N k$ and $y \neq A y$ for $y \in \partial \Omega_{c_{2}}$, from Lemma 7 we get $i_{P}\left(A, \Omega_{c_{2}}\right)=0$. By Lemma $5(i i)$ and $c_{1}<k c_{2}$, we have $\bar{P}_{c_{1}} \subset \bar{P}_{k c_{2}} \subset \Omega_{c_{2}}$. From Lemma 4(iii), $A$ has a fixed point in $\Omega_{c_{2}} \backslash \bar{P}_{c_{1}}$. If $y \neq A y$ for $y \in \partial P_{c_{3}}$, then from Lemma $6 i_{P}\left(A, P_{c_{3}}\right)=1$. By Lemma 5(ii) and Lemma 4(iii), $A$ has a fixed point in $P_{c_{3}} \backslash \bar{\Omega}_{c_{2}}$. The proof is similar when (C2) holds and we omit it here.

Corollary 9 If there exist a constant $c>0$ such that one of the following conditions holds:
(H1) $0 \leq f^{0}, f^{\infty}<\frac{1}{L}, f_{k c}^{c} \geq N k$, and $y \neq A y$ for $y \in \partial \Omega_{c}$.
(H2) $N<f_{0}, f_{\infty} \leq \infty, f_{0}^{c} \leq \frac{1}{L}$, and $y \neq A y$ for $y \in \partial P_{c}$.
Then (1) has two positive solutions.
Proof. We show that (H1) implies (C1). It is easy to verify that $0 \leq f^{0}<\frac{1}{L}$ implies that there exists $c_{1} \in(0, k c)$ such that $f_{0}^{q_{1}}<\frac{1}{L}$. Let $m \in\left(f^{\infty}, \frac{1}{L}\right)$. Then there exists $c_{2}>c$ such that
$\max _{n \in[a, c+1]} f(n, y) \leq k y$ for $y \in\left[c_{2}, \infty\right)$ because $0 \leq f^{\infty}<\frac{1}{L}$. Let
$n=\max \left\{\max _{n \in[a, c+1]} f(n, y): 0 \leq y \leq c_{2}\right\}$ and $c_{4}>\max \left\{\frac{n}{\frac{1}{L}-m}, \frac{1}{L}\right\}$.
Then we have
$\max _{n \in[a, c+1]} f(n, y) \leq m y+n \leq m c_{4}+n<\frac{1}{L} c_{4}$ for $y \in\left[0, c_{4}\right]$.
This implies that $f_{0}^{c_{4}}<\frac{1}{L}$ and (C1) holds. Similarly, (H2) implies (C2).
As a special case of Theorem 8 and Corollary 9, we have the following two results.

Theorem 10 Assume that one of the following conditions holds.
(C3) There exist constants $c_{1}, c_{2} \in \mathbb{R}$ with $0<c_{1}<k c_{2}$ such that

$$
f_{0}^{c_{1}} \leq \frac{1}{L} \text { and } f_{k c_{2}}^{c_{2}} \geq N k
$$

(C4) There exist constants $c_{1}, c_{2} \in \mathbb{R}$ with $0<c_{1}<c_{2}$ such that

$$
f_{k c_{1}}^{c_{1}} \geq N k \text { and } f_{0}^{c_{2}} \leq \frac{1}{L}
$$

Then (1) has a positive solution.
Corollary 11 Assume that one of the following conditions holds:
(H3) $0 \leq f^{0}<\frac{1}{L}$ and $N<f_{\infty} \leq \infty$.
(H4) $0 \leq f^{\infty}<\frac{1}{L}$ and $N<f_{0} \leq \infty$.

Then (1) has a positive solution.

## References

1. R. P. Agarwal, H. B. Thompson and C. C. Tisdell, Three point boundary value problems for second-order discrete equations, Comput. Math. Appl., 45 (2003), 1429-1435.
2. D. R. Anderson, I. Rachunkova and C. C. Tisdell, Solvability of discrete Neumann boundary value problems, J. Math. Anal. Appl., 331 (2007), 736-741.
3. D. Bai and Y. Xu, Nontrivial solutions of boundary value problems of second-order difference equations, J. Math. Anal. Appl., 326 (2007), 297-302.
4. A. Cabada, A. Iannizzotto and S. Tersion, Multiple solutions for discrete boundary value problems, J. Math. Anal. Appl., 356 (2009), 293-307.
5. X. Cai and J. Yu, Existence theorems for second-order discrete boundary value problems, J. Math. Anal. Appl., 320 (2006), 649-661.
6. D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, San Diego, 1988.
7. X. He and X. Wu, Existence and multiplicity of solutions for nonlinear second-order difference boundary value problems, Comput. Math. Appl., 57 (2009),1-8.
8. K.Q. Lan, Multiple positive solutions of semilinear differential equations with singularities, J. London Math. Soc., 63 (2001), 690-704.
9. H. Liang and P. Weng, Existence and multiple solutions for a second-order difference boundary value problem via critical point theory, J. Math. Anal. Appl., 326 (2007), 511-520.
10. R. Ma and H. Ma, Existence of sign-changing periodic solutions of second-order difference equations, Appl. Math. Comput., 203 (2008), 463-470.
11. G. Zhang, and R. Medina, Three-point boundary value problems for difference equations, Comput. Math Appl., 48, (2004) 1791-1799.

[^0]:    * Pamukkale University, Department of Mathematics, 20070, Denizli, Turkey iyaslan@pau.edu.tr

