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Abstract: Durum wheat (Triticum durum L.) is a vital crop in the rain-fed areas of Turkey. In this study, the grain yield of twenty 

durum wheat genotypes (sixteen advanced lines with four checks) tested across 8 rain-fed environments during the 2008-2009 

cropping season was evaluated using GGE (Genotype (G) Main Effect + Genotype by Environment Interaction (GEI)) Biplot Approach. 

Environment (E) captured most (83 %) of the grain yield (GY) variation, while the portions attributed to G and GEI were only 6 and 11 

%, respectively. In addition, most of the testing Es were highly correlated. According to GGE-Biplot analysis, ‘Which won where’ pattern 

partitioned the testing Es into three mega-environments (ME): the first ME with six Es with G13 (the highest yielder) as the winning 

genotype; the second ME encompassed one environment (E1, Konya) with G4 (the lowest yielder) as the winning genotype, and the 

last ME represented by one location (E6, Altintas) with G10 (the higher yielder) as the winning genotype. GGE-Biplot analysis showed 

that although the Durum Wheat Yield Trials were conducted in many environments, outcomes alike can be obtained from one or two 

representatives of each ME. On the other hand, no correlation of these MEs with their geographic location was observed. In conclusion, 

the presence of cross-over GEI underscores that efforts should be given to identify specifically adapted genotypes rather than broadly 

adapted ones tested on multi-environment trials (METs). 
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1. Introduction 
Multi-environment trial (MET) plays an essential role in 

plant breeding. The main goal in plant breeding is to 

select new cultivars agronomically superior (i.e., high 

grain yielder) over commonly grown cultivars (Rakshit et 

al., 2012; Li and He, 2021). However, little attention is 

given to the interaction of genotypes with unpredictable 

target environments. In this context, METs can help 

understand genotypes' performance in various 

environments by measuring the stability of genotypes 

(Gs) across environments (Es) (Tekdal et al., 2017; 

Scapim et al., 2000). But, MET data are rarely used to 

their full potential, even though data on most plant traits 

have been collected. Furthermore, in the analysis of such 

data, primarily genotypes are selected based on G main 

effects, while GEI (genotype by environment interaction) 

is ignored (Yan and Tinker, 2006; Kendal, 2019). 

Various statistical models have been suggested to analyze 

the complexity of the GEI (Yan and Kang, 2003). One of 

those models, the biplot methodology, depicts the 

complex GEI in a simple, graphical fashion (Gabriel, 

1971). Two types of Biplot, AMMI (Additive Main-effect 

and Multiplicative Interaction) Biplot (Crossa, 1990; 

Gauch, 1992) and GGE (Genotype + Genotype by 

Environment Interaction) Biplot (Yan et al., 2000; Yan 

and Kang, 2003), are the most commonly used to 

understand GEI comprehensively. Both G and GEI should 

simultaneously be included in a model to evaluate 

genotypes (Yan and Tinker, 2006; Sabaghnia et al., 2008). 

The G + GEI (GGE) biplot discards E main effects and 

merges G main effects with the GEI dataset (Yan et al., 

2000). It dissects the GEI pattern in the data and 

delineates 'which-won-where' and mega-environments 

(Yan et al., 2007; Yan, 2019; Yan et al., 2021). 

So far, GGE-biplot analysis has been applied to many 

crops such as soybean (Yan and Rajcan, 2002), rice 

(Samonte et al., 2005), bread wheat (Kaya et al., 2006; 

Roozeboom et al., 2008; Akcura et al., 2011; Nehe et al., 

2019), barley (Dehghani et al., 2006; Mohammadi et al., 

2009), peanuts (Putto et al., 2008), lentils (Sabaghnia et 

al., 2008), corn (İlker et al., 2009), oats (Yan et al., 2010) 

and sorghum (Rao et al., 2011). However, despite reports 

on GGE-biplot analysis in selecting superior genotypes or 

test environments in such crops, its application to durum 

wheat METs in Turkey is insufficient (Tekdal et al., 2017; 

Kendal, 2019; Mohammadi et al., 2021). Genotypes (i.e., 

breeding lines) are routinely tested to select ones 

adaptable to Turkey's Winter Durum Wheat Zone. The 

target environments (i.e., Winter Durum Wheat Zone) are 

distributed across latitudes and altitudes with various 

climatic conditions, representing durum wheat-growing 

areas in the Central Anatolian Region and Transition 

Regions of Turkey. Therefore, to show the usefulness of 

the GGE-Biplot method in dissecting the complex GEI in 

MET data, we analyzed the GYs of 16 improved lines with 

four checks tested in eight rainfed environments. 
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2. Material and Methods 
2.1. Field Trials 

During the 2008-2009 cropping season, 20 winter durum 

wheat genotypes were tested in eight rainfed sites 

(Konya, Çumra, Eskişehir, Ulaş, Emirdağ, Altındaş, 

Esenboğa, and Malya), representing the Central Anatolia 

Region (CAR) and Transition Regions (TZs) of Turkey 

(Tables 1 and 2). The experiment was set up in a 

randomized block design with three replications. Sowing 

was done with an experiment drill in 1.2 m × 7 m plots (6 

rows with 20 cm spacing apart). The sowing rate was 

550 seeds m-2. Fertilizers were applied as 27 kg N ha-1 

and 69 kg P2O5 ha-1 during planting and 50 kg N ha-1 just 

before the stem elongation stage (Zadoks Stage 30). 

Harvest was done by a plot-combine in 1.2 m × 5 m plots. 

Grain yield (GY) was expressed as tonnes per hectare (t 

ha-1). 

2.2. Statistical Analysis 

In the analysis of variance (ANOVA), the E and blocking 

effects were accepted as random, while the G effect was 

accepted as fixed. ANOVA was applied to GY data 

combined over the years. Gs and Es were descending 

ranged based on LSD (Least Significant Difference) test. 

Gs performances, their stabilities, and the ideal G were 

determined by the GGE-Biplot analysis method. Also, 

following the same process, the distinctive and 

representative abilities of the Es and the ideal E were 

determined. Again, thanks to the related procedure, ME 

and which-won-where patterns were determined for Es 

and Gs.  ANOVA, LSD test and GGE-biplot analysis were 

conducted using GENSTAT 12 (Yan et al., 2000; Yan et al., 

2001; Yan, 2002). 

 

Table 1. Genotypes   

Code Pedigree Yield (t ha-1) 

G1 1-KOBAK2916*61-130/3/GOKALA//BR180/ WLS/4/ B24SYRIAN-2 3.02 eg 

G2 2-KOBAK2916*61-130/3/GOKALA//BR180/WLS/4/ B24SYRIAN-2 2.75 j 

G3 KND1149//68111/WARD/3/RICCYA(WINTER)/BERK 3.01 eg 

G4 1-ALTINTAS/3/ZF/LDS//185-1/3/61-130/LDS 2.58 k 

G5 KIZILTAN 2.81 ij 

G6 2-ALTINTAS/3/ZF/LDS//185-1/3/61-130/LDS 2.86 gh 

G7 3-ALTINTAS/3/ZF/LDS//185-1/3/61-130/LDS       3.00 gh 

G8 073-44/BERKMEN 469 WINTER 2.83 hj 

G9 TA=TRANSVAAL AFRIKCA/BERK469/GERARDO516 2.97 gh 

G10 KUNDURU 3.25 bd 

G11 AKBUG."S"/RUGBY NEW.N.DURUM/BD2777//SARI BUG. 2.97 gh 

G12 1-61-130/UVY162/64140/WARD                               3.10 cf 

G13 HARA456/4/61-130/414-44//68111/WARD/3/69T02/69T11/ ZF7113             3.75 a 

G14 2-61-130/UVY162/64140/WARD     3.29 b 

G15 MIRZABEY 3.26 bc 

G16 3-61-130/UVY162/64140/WARD     3.32 b 

G17 CKM79/KOBAK/LEEDS//6783 3.18 be 

G18 WALNOVA GE 598(ITALIA)//YUMA/FATO"S"/3/ TWWOH84-32 3.08 df 

G19 BERK469//68140/WARD/CKM79"S" 3.06 ef 

G20 ALTINTAS 3.09 cf 

 Mean 3.06 

 LSD (0.05)  0.17 

Genotypes were descending ranged based on LSD (Least Significant Difference) test. 

 

Table 2. Environments 

Code Environment Yield (t ha-1) Precipitation (mm) Latitude Longitude Altitude (m) 

E1 Konya 1.86 h 320 37°51' N 32°33' E 1029 

E2 Cumra 4.47 a 285 37°35' N 32°38' E 1012 

E3 Eskisehir 2.91 e 371 39°48' N 30°27' E 813 

E4 Ulas 2.23 f 353 39°16' N 36°46' E 1472 

E5 Emirdag 4.29 b 416 39° 4' N 31°21' E 959 

E6 Altindas 3.47 c 560 39° 3' N 30° 6' E 1019 

E7 Esenboga 2.11 g 402 40° 7' N 32°59' E  942 

E8 Malya 3.16 d 310 39°16' N 34°18' E 1157 

 Mean 3.06     

 LSD (0.05) 0.11     

Environments were descending ranged based on LSD (Least Significant Difference) test. 
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3. Results 
3.1. Analysis of Variance 

Analysis of variance (ANOVA) revealed that E and G main 

effects and GEI were significant (P<0.001, Table 3). As is 

typical of most METs, GY was significantly affected by E, 

accounting for 83% of the total variation (G+E+GEI). 

However, the effect of GEI was greater than that of Gs. 

The Gs ratio of 17% over (G+GEI) suggested the possible 

presence of multiple durum wheat mega-environments 

(MEs) in the CAR and TZs of Turkey, where the genotype 

rank was different from other MEs. Partitioning the G + 

GEI by GGE biplot analysis showed that the first two 

principal components (PC1 and PC2) were factors, 

accounting for 70% of the total sum of squares of G+GEI 

(Figure 1). 

 

 

Table 3. Analysis of variance for grain yield 

Source df SS MS F Model Explained (%) 

Environment (E) 7 404.19 57.74 184.04*** Random 83 

Replication (E)  16 5.02 0.31 
   

Genotype (G) 19 28.30 1.49 3.86*** Fixed 6 

G x E Interaction 133 51.29 0.39 4.00*** Random 11 

Error 304 29.28 0.10 
   

Total 479 518.08 
   

100 

CV(%) = 10.14                   R2 = 0.94       Mean = 3.06 t ha-1  

***= significant at the 0.001 probability level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Comparing genotype performance vs. stability. 

G stands for genotypes. 

 

3.2. Genotype and Environment Means 

The average GYs of genotypes over environments ranged 

from 2.58 t ha-1 for G4 to 3.75 t ha-1 for G13, with an 

overall average of 3.06 t ha-1 (Table 1), whereas the 

average GYs for environments varied between 1.86 t ha-1 

in E1 (Konya) and 4.47 t ha-1 in E2 (Çumra) (Table 2). 

Average GY in the GEI data matrix (data not given) 

ranged from 1.40 t ha-1 for the G4 genotype in E7 

(Esenboğa) to 5.74 t ha-1 for G13 in E5 (Emirdağ). The 

lowest and highest yielding genotypes were originated 

from Turkey's Winter Durum Wheat Breeding Program. 

3.3. Genotype Performance and Stability 

The genotype performance and stability were depicted 

by the GGE biplot (Figure 1). Also, it can be evaluated 

together with the average environmental coordination 

(AEC) method (Yan, 2001; Yan, 2002). Accordingly, G16 

and G14 were the best performers in terms of GY, 

followed by G17 and G18 (Figure 1). On the other hand, 

G2 and G4 were the worst yielders. It can be observed 

that G15, G12, G19, and G10 were the least stable for GY 

with higher projections from the AEC abscissa. In 

contrast, G1 and G9 were relatively stable, if not higher 

grain yielders. G13 was the highest grain yielder but not 

stable. 

Furthermore, Figure 2 showed the genotype ranking for 

GY in terms of the 'ideal genotype', indicating the best 

performer with stability across environments (Yan and 

Tinker, 2006). Our study revealed that G13 followed by 

G16, G14, and G15 was close to the ideal genotype. Those 

were high yielders within all genotypes tested, but G13 

and G15 were not stable (Table 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Detecting ideal genotype. G stands for 

genotypes. 
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3.4. Comparison of Environments 

Most environments were highly correlated for GY, except 

E1 and E6 (Figure 3). E1 consistently showed inverse 

relationships with the remaining environments, as the 

vector showed wide-angle. However, E2, E3, E5, and E8 

were not associated with close right angles to E6 and E4 

(Yan and Tinker, 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Detecting environment representativeness, its 

discriminative ability, and ideal environment. E stands 

for environments. 

 

The vector length of an environment represents its 

discrimination ability (Yan et al., 2000). Therefore, E5 

and E6 were the most discriminatory environments. The 

angle between an environment and AEC represents the 

representativeness of the environment: the larger the 

angle, the less representative the environment (Yan et al., 

2000). Therefore, E7 was the most representative while 

E6 was the least representative. An ideal environment 

should both distinguish genotypes and represent the 

average environment. According to the definition of an 

ideal environment, there was no ideal environment 

between them (Figure 3). However, E7 as the most 

representative environment and E5 as the most 

discriminatory environment could be considered ideal if 

combined. 

3.5. Which-Won-Where Pattern and Mega-

Environment Detection 

The which-won-where biplot is established by combining 

the furthest (i.e., vertex) genotypes that form a polygon 

(Yan, 2001). Genotypes at the polygon's vertices are 

either the best or the poorest in one or more 

environments. The genotype at the vertex of the polygon 

performs best in the environment entering the sectors. 

The which-won-where biplot for GY is presented in 

Figure 4. Biplot demonstrated the presence of the cross-

over GEI and mega-environments (MEs) for GY. The 

biplot (Figure 4) was substantially illustrative as it could 

distinguish environments more effectively and the 

polygon (trapezoid) was well distributed (Yan, 2002; Yan 

and Tinker, 2006). The trapezoidal polygon had four 

genotypes, namely G13, G4, G11, and G10 (Figure 4). G13 

genotype performed best in 1E2 (Cumra), E3 (Eskişehir), 

E4 (Ulas), E5 (Emirdağ), E7 (Esenboğa) and E8 (Malya), 

while G4 performed best in E1 (Konya) and G10 in E6 

(Altintas). The vertex genotype G11 did not perform well 

in any test environments. The equality lines effectively 

divided the biplot into four sectors, holding all 

environments. Thus, the test environments were divided 

into three MEs: the first ME1 with 1E2 (Cumra), E3 

(Eskişehir), E4 (Ulas), E5 (Emirdağ), E7 (Esenboğa), and 

E8 (Malya), with G13 as the winning genotype. The 

second ME included E1 (Konya) with G4 as the winning 

genotype, while the last ME was represented by E6 

(Altıntaş) with G10 as the winner. Sector 4 did not have 

any ME as none of the test environments were engaged. 

On the other hand, there was no correlation between 

environments in an ME in terms of geographic location, 

precipitation pattern, and altitude (Table 2 and Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Detecting mega-environments and which-won-

where pattern. G and E stand for genotypes and 

environments. 

 

4. Discussion 
The GGE biplot has been used in only a few studies to 

analyze the MET data of durum wheat in Turkey (Tekdal 

et al., 2017; Kendal, 2019). In our research, E contributed 

83% of the total variation in the data, whereas G and GEI 

contributed less. Gauch and Zobel (1997) reported that E 

usually accounted for approximately 80% of the total 

variation in MET data. In the MET data of bread wheat, 

Kaya et al. (2006) reported that the variation described 

by E was as high as 81%. A similar trend was reported by 

Dehghani et al. (2006) for barley MET in Iran. Putto et al. 

(2008) revealed that 50-80% of the total variation 

attributed to E, while the main effect of G contributed 15-

46% of the total variation. In our study, GEI explained a 

higher proportion of variation than G alone. Compared 

with G, the higher ratio of GEI indicated the possible 

presence of different MEs in the test Es (Yan and Hunt, 
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2002; Mohammadi et al., 2009; Akcura et al., 2011; 

Rakshit et al., 2012; Kendal, 2019). 

In our study, the first two PC explained 70% of the 

variability for the GY data of durum wheat METs. Also, G, 

together with GEI, accounted for 17% of the total 

variation for GY. Thus, the GGE-biplot can be interpreted 

as a useful visualization of variation in MET data (Gauch 

and Zobel, 1997). Furthermore, visual representation of 

PC1 and PC2 revealed the variation in the dataset. Thus, 

it was clear that five of the nine high grain yielders (G13, 

G15, G12, G10, and G19) were unstable, while eight of the 

eleven low yielders (G1, G3, G9, G7, G6, G5, G8, and G2) 

were stable. This can be explained by the fact that a 

different gene cluster governs the trait of interest, and 

the effect of E on the expression of that gene cluster 

varies significantly (Li and He, 2021). 

The GGE-biplot allows the detection of genotypes close to 

the ideal genotype. Accordingly, a process alike can be 

applied to an ideal environment. G13 was most relative 

to the ideal genotype, followed by G16, G14, and G15. 

However, the G13 was the highest yielder but less stable. 

G13, which was closest to the ideal genotype, showed the 

best performance in E5 (Emirdağ), while it reached 

nearly the average yield in E6 (Altıntaş) and was behind 

the average yield at the E1 (Konya). In addition, G13 

exhibited different GY values across test environments, 

indicating the cross-over GEIs (Nehe et al., 2019). A 

similar observation was reported in various crops 

(Dehghani et al., 2006; Kaya et al., 2006; Sabaghnia et al., 

2008; Dehghani et al., 2008; İlker et al., 2009; Rakshit et 

al., 2012; Kendal, 2019). 

Our study showed that all test environments except E1 

and E6 were closely related, and most of them (i.e., E2, 

E3, E4, E7, and E8) were also close to the average 

environment. In other words, the discriminating ability 

and representativeness of test environments could be 

easily detected. Thus, E5 and E6 with higher vector 

lengths were more distinctive than E8 and E7. Therefore, 

environments close to the average environment, such as 

E7, E2, and E3, were the most representative and suitable 

test environments for selecting widely adapted 

genotypes. On the other hand, the distinctive and non-

representative E6 helped determine specifically adapted 

genotypes. Therefore, a specifically adapted genotype to 

a particular environment could be conveniently 

described by employing this type of graphical 

representation (Plavsin et al., 2021). 

Furthermore, closer relationships between test 

environments showed that the same information could 

be obtained from fewer environments. Thus, similar 

environments could be eliminated from the future METs 

for durum wheat in Turkey. It is vital in allocating scarce 

resources while setting up METs most appropriately (Yan 

et al., 2021). The presence of wide angles between 

environment vectors, indicating strong negative 

correlations between test environments, emphasizes the 

presence of solid crossover GEIs for GY in some 

environments (Yan and Tinker, 2006; Yan, 2019). They 

noted that genotypes that perform better in one 

environment would underperform in another. At the 

same time, closer relationships between the test 

environments indicate the absence of crossover GEIs, 

suggesting genotype sequencing does not vary from one 

environment to another. A mixture of cross-over and 

non-cross-over GEI types is typical in MET data (Kaya et 

al., 2006; Fan et al., 2007; Sabaghnia et al., 2008; Rao et 

al., 2011; Rakshit et al., 2012; Yan, 2019; Yan et al., 2021). 

It could be possible because some genotypes were more 

sensitive to changes in the growing environment, while 

others would be stable in response to the environment. 

The 'which-won-where' biplot model may be associated 

with cross-over GEI, ME differentiation, specific 

adaptation (Gauch and Zobel, 1997; Yan et al., 2000; Yan 

and Tinker, 2006; Putto et al., 2008, Rao et al., 2011; 

Nehe et al., 2019; Li and He, 2021; Plavsin et al., 2021). 

Based on the biplot analysis, test environments were 

divided into three MEs. It has been suggested that 

although testing genotypes has been conducted over 

many environments, a similar conclusion can be drawn 

from one or two representatives of ME. By doing so, the 

testing cost of genotypes over environments can be 

significantly reduced. However, the Biplot model needs 

to be validated in multi-year and environmental trials 

conducted on durum wheat (Yan et al., 2021). 

 

5. Conclusion 
The specific adaptation of the genotypes tested in this 

research suggests that it requires more emphasis than 

broader adaptation in durum wheat breeding (DWB). In 

this context, participatory DWB gains more importance 

than the current research station-oriented breeding 

program. 'Which-won-where' analysis has shown the 

existence of MEs, and most geographically different 

environments can produce similar outcome. Therefore, 

to effectively run ME with limited resources, 

discriminatory environments that cover representative 

environments can be included, rather than broadly 

expanding the trials onto relevant environments. 

Following a similar analysis, durum wheat breeders in 

other regions need to identify MEs and allocate test 

environments accordingly. The presence of cross-over 

GEI indicates that the current procedure does not 

realistically depict the actual situation. Instead, efforts 

are needed to identify environment-specific genotypes 

from multi-year and environmental data as this will take 

into account the stability parameter of the genotypes, so 

they should be taken into account for their release. 
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