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Abstract 

The ANOVA-F test is the most known procedure for comparing at least three population 
means. However, this conventional test might give misleading results when it’s underlying 
assumptions are violated. In this study, Welch’s test with trimmed mean, Welch’s test with 
trimmed mean and a bootstrap-t, newly proposed 2

tkB test and ANOVA-F test were 

compared in terms of actual Type I error rates under not only non-normality and 
heteroscedasticity, but also with non-identical distribution shapes. The newly proposed 
method outperformed ANOVA-F and other alternatives under various situations. 
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Aynı Olmayan Dağılımlar Altında Konum Eşitlik Testleri 

Öz 

ANOVA-F testi, en az üç kitle ortalamasının karşılaştırılması için en çok bilinen 
yöntemdir. Ancak, bu geleneksel yöntem varsayımları ihlal edildiğinde yanıltıcı sonuçlar 
verebilir. Bu çalışmada budanmış ortalama ile Welch testi, budanmış ortalama ve 
bootstrap-t ile Welch testi, yeni önerilen 2

tkB testi ve ANOVA-F testi gerçekleşen 1. Tip hata 

oranlarına göre, sadece normalliğin ve homojen varyanslılığın sağlanmadığı durumlarda 
değil, aynı zamanda aynı olmayan dağılım şekilleri altında da karşılaştırılmıştır. Yeni 
önerilen yöntem, ANOVA-F ve diğer alternatiflere göre farklı durumlar altında daha iyi 
sonuçlar vermiştir. 

Anahtar Kelimeler: ANOVA-F Test, 2
tkB  Test, Welch Test, Aynı Olmayan Dağılım 

Şekilleri, 1. Tip Hata. 

JEL Sınıflandırma Kodları: C12, C15. 

                                                 
1 Doktora Öğrencisi, Dokuz Eylül Üniversitesi, Fen Fakültesi, İstatistik Bölümü, 

iremm-yilmazz@hotmail.com 
2 Dr., Dokuz Eylül Üniversitesi, Fen Fakültesi, İstatistik Bölümü, 

firat.ozdemir@deu.edu.tr 
3 Doktora Öğrencisi, Dokuz Eylül Üniversitesi, Fen Fakültesi, İstatistik Bölümü, 

gnavruz@gmail.com 



 

 

 

 
İ.YILMAZ – A.F.ÖZDEMİR –G.NAVRUZ 

2 
 

1. INTRODUCTION 

Testing two or more groups for location equality is a common statistical interest 

in many working areas such as economics and administrative sciences, medicine, 

agriculture etc. When there are more than two groups, the most known procedure is 

the analysis of variance (ANOVA) F test and to get accurate results from the 

ANOVA-F test, it’s fundamental assumptions must be satisfied.  

First assumption is the normality of population distributions. In fact, 

populations are almost never normally distributed (Micceri, 1989). Further they can 

have highly skewed and heavy tailed shapes. Actual Type I error rate of ANOVA-F 

test can be overly affected by non-normality that leads taking a wrong decision. 

Another assumption is equality of population variances which is called as 

homoscedasticity, and it is very common in wide range of study fields. When there 

are both non-normality and heteroscedasticity, ANOVA-F test’s accuracy and 

validity can be strongly affected and the actual Type I error rate can highly deviate 

from the nominal level (Cribbie et al, 2012). 

Moreover, the population distributions from which the observations are sampled 

might be non-identical. Non-identicality of population distributions is a common 

situation as well as non-normality and heteroscedasticity. The purpose of this study 

is to compare ANOVA-F, Welch's test with trimmed mean, Welch's test with 

trimmed mean and a bootstrap-t, and newly proposed 2
tkB test with respect to their 

actual Type I error rates under different experimental conditions. 

2. DESCRIPTION OF TESTS 

2.1 Welch’s Test with Trimmed Mean 

When two normal populations are considered without assuming the equal 

population variances, a problem arises that is known as Behrens-Fisher in literature 

(Behrens, 1929; Fisher, 1935). The first attempt that aims to solve this problem is 

Welch's approximate degrees of freedom solution (Welch, 1947). It’s degrees of 

freedom depends on both the sample sizes and the sample variances. Later, Welch 

developed a generalization of his procedure for comparing k independent groups 
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(Welch, 1951). Although Welch test is robust to heteroscedasticity, it behaves so 

sensitive to slight departures from normality due to using the sample mean and 

variance. If the sample trimmed mean and winsorized variance are used instead of 

the sample mean and variance, the test becomes robust to both non-normality and 

heteroscedasticity (Wilcox, 2012). In this study, this procedure is referred as 

Welch's test with trimmed mean. The hypothesis to test is 

0 t1 tk tH : ...       (1) 

Let ijX   denotes j th observation of i th group where i=1,2,…,k, j=1,2,…,n. The 

sample trimmed mean, winsorized mean, and winsorized variance of the i th group 

are denoted by tiX , wiX ,and 2
wis respectively.  

To calculate the trimmed mean, first trimming proportion (  ) is chosen where

  0 0.5 . The number of observations that will be trimmed from each tail is 

found as   [ n]  where n is the sample size. The observations are put in ascending 

order and after trimming,   h n 2 is the effective sample size. The sample 

trimmed mean is 

n

t ( j)
j 1

1
X X

h





   (2) 

To compute the winsorized variance, winsorized mean is evaluated. After 

trimming the observations from each tail define, 

( 1) j ( 1)

j j ( 1) j (n )

(n ) j (n )

X , X X

Y X , X X X
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The corresponding test statistic is 
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t
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F

B 1



 (6) 

where 
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i ti
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(12) 

When the null hypothesis is true tF  has approximately an F distribution with 

k 1  and wt  degrees of freedom 

12

i
k

wt 2
i 1 i

w
1

3 U
k 1 h





    
   

 
 
 

  (13) 

The critical value is 
wtk 1, ,F     and 0H  is rejected if

wtt k 1, ,F F    . 
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2.2 Welch’s Test with Trimmed Mean and Bootstrap-t 

When Welch's test is used in conjunction with 20% trimmed mean and 

bootstrap-t, actual Type I error rate can be controlled well (Westfall & Young, 

1993; Wilcox, 2012).The hypothesis to test is given in equation (1). 

The steps of bootstrap-t are 

 Determine a bootstrap sample * * *
i1 i 2 in(X , X ,..., X ) for i=1,2,…,k 

 Set * *
ij ij tiC X X  , ij 1, 2,..., n , where tiX  is the sample trimmed mean of i 

th original group 

 Calculate *
tF  by using *

ijC  values  

 Repeat this process B times 

 Write the obtained B test statistics in ascending order ( * *
t(1) t(B)F ... F  ) 

 Round U (1 )B  to nearest integer 

  If *
t t(U)F F , reject the null hypothesis where tF  is the test statistic of original 

sample 

2.3 2
tkB  Test 

Newly proposed 2
tkB test is another alternative that works under both 

heteroscedasticity and non-normality (Özdemir & Yıldıztepe, 2013). The 

hypothesis to test is given in equation (1). Besides tiX , wiX , and wis , the standard 

error of the sample trimmed mean is denoted as 
tiXs where i=1,...,k. 

 ti

wi
X

i

s
s

1 2 n


 
 (14) 

By using 
Xti

2s , the weights of each group are calculated: 
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2
X

i

2 2 2
X X X

ti

t1 t2 tk

1

s
ω =

1 1 1
+ +...+

s s s

 (15) 

Then, the weighted mean +
1 t1 2 t2 k tkX =ω X +ω X +...+ω X and the following 

statistic are computed for each group: 

ti

+
ti

ti

X

X -X
T =

s
 (16) 

Bailey's normalizing transformation is applied to all tiT (Bailey, 1980). 

 

 

2
c2

2i 1
ti2

ti i2
ic2

i i

5 2z +3
4ν + T24z =± ν ln 1+

ν4z +9
4ν +ν +

12

   
  
   

 

(17) 

where i iv h 1  , i i ih n 2   and cz  is the critical value for the related 

significance level under the standard normal distribution. The sign of the tiz ’s are 

the same as tiT ’s. The corresponding test statistic is calculated as given below 

 

 
i

1
22

+
2 ti
c2

k k i X12 2 2
tk ti j2

i=1 i=1 ic2
i i

t

X -X5 2z +3
4ν + S

24B = z = ν ln 1+
ν4z +9

4ν +ν +
12

                               

 

 

(18) 

The critical value of the method is found by applying a bootstrap-t: 

 Compute a bootstrap sample 
i

* *
i1 inX ,...,X of size in and set * *

ij ij tiC X X 

ii 1,...,k; j 1,2,...,n   
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 Compute the test statistics 2*
tkB by using * *

ij ij tiC X X   

 Repeat this process B times yielding 2* 2*
tk1 tkBB ,...,B  

 2* 2*
tk1 tkBB ,...,B   values are put in ascending order, 2* 2*

tk(1) tk(B)B ... B   

 Set  U 1 B  , rounding to the nearest integer and find 2*
tk(U)B  

 Reject H0 if
2 2*
tk tk(U)B B  where 2

tkB is found from the original sample  

3. DESIGN OF THE SIMULATION STUDY 

Actual Type I error rates are investigated under 80 different experimental 

conditions including non-identical distributions. The conditions are obtained by 

combining homoscedasticity and heteroscedasticity, equal and unequal sample 

sizes with positive (the largest sample size paired with the largest population 

variance and the smallest sample size paired with the smallest population variance) 

and negative (the largest sample size paired with the smallest population variance 

and the smallest sample size paired with the largest population variance) pairings 

of variances, symmetric and asymmetric distributions. Non-identicality of 

distributions are designed by using three symmetric, two symmetric and one 

asymmetric, one symmetric and two asymmetric, and three asymmetric 

distributions. Symmetric distributions are N(0, 1), t(4), U(-1, 1), g-h(0, 0.14), g-

h(0, 0.2), and g-h(0, 0.22) whereas asymmetric ones are 
2 (4) , exp(3), g-h(0.81, 

0), and g-h(1, 0). 

g-h distribution allows to observe how a distribution differs from normality with 

the skewness parameter g and kurtosis parameter h, and when g=h=0 the g-h 

distribution is equivalent to standard normal distribution. 

Let Z be a standard normal random variable and the following two 

transformations are used to generate data from g-h distribution.  

When g≠ 0,  
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2hZ
(exp(gZ) 1)exp

2
X

g

 
  

   
(19) 

When g≠ 0, 

2hZ
X Zexp

2

 
  

 
 (20) 

(Hoaglin, 1985). 

ANOVA-F test, Welch's test with trimmed mean, Welch's test with trimmed 

mean and a bootstrap-t, and 2
tkB test are represented as F, TW, BTW, and 2

tkB  

respectively. Nominal significance level is set at 0.05 and the number of 

replications for all experimental conditions is 10000. All simulations are performed 

with statistical programming language R (version 3.1.2). 

4. SIMULATION RESULTS 

Bradley’s conservative criterion of robustness ( ˆ0.9 1.1     ) was used for 

evaluating actual Type I error rates of the methods (Bradley, 1978). When the 

actual Type I error rate of a method falls within the interval 0.045 and 0.055, that 

method is considered as robust when the nominal significance level is 0.05.Cells 

colored dark grey represent liberal results whereas cells colored light grey 

represent the conservative results. 

Table 1 shows the actual type I error rates of the methods under equal sample 

sizes and homoscedasticity. In this table, F and TW generally gave liberal results 

whereas 2
tkB and BTW were good at controlling Type I error rates for almost all 

settings. Although the population variances are equal with equal sample sizes, non-

identical distribution shapes caused deviations from nominal significance level for 

F and TW. Note that all methods could control the actual Type I error rates when 

all populations come from symmetric distributions. 

Table 2 shows the actual Type I error rates under equal sample sizes and 

heteroscedasticity. According to this table, F gave liberal results under all settings 
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and TW followed it. However, 2
tkB  and BTW saved the nominal Type I error rates 

in 14 settings. Since there is heteroscedasticity, F test could not control the actual 

Type I error rates even with three symmetric distributions. On the other side, TW 

gave acceptable results under three symmetric distributions due to insensitivity to 

heteroscedasticity. Table 3 shows the actual Type I error rates under unequal 

sample sizes and homoscedasticity. In this table, F and TW could not save the 

results for almost all cases. Even though the population variances are equal, F and 

TW are affected by unequal sample sizes and non-identical distribution shapes. 

Table 4 shows the actual Type I error rates under unequal sample sizes with 

positive pairing of variances. In this table, F gave both conservative and liberal 

results. Although TW controlled actual Type I error rates when all distributions are 

symmetric, it gave liberal results under settings with asymmetric distributions. 

Furthermore, results of 2
tkB and BTW fell within the interval (0.045, 0.055) in 

almost all settings. Table 5 shows the actual Type I error rates under unequal 

sample sizes with negative pairing of variances. Because of negative pairing, F and 

TW had liberal results. However, 2
tkB  and BTW had a good control over actual 

Type I error rates as in the other tables. 

5. CONCLUSION 

In experimental research, there is an important interest in obtaining an 

appropriate method under non-normality, heteroscedasticity and non-identical 

distribution shapes. In this study, F, TW, BTW and a newly proposed 2
tkB test were 

compared in terms of saving actual Type I error rates. Out of 80 different settings, 

the nominal significance level was saved 9 times by F, 24 times by TW, 70 times 

by BTW, and 73 times by 2
tkB .In general 2

tkB had the best results and BTW 

followed it. The number of conservative, liberal and controlled results for all 

methods is shown in Figure 1.  
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Figure 1. Number of The Controlled, Liberal and Conservative Results 

As a consequence, the performances of newly proposed 2
tkB test and BTW on 

controlling actual Type I error rates were considerably well when normality and 

homogeneity of variances assumptions are violated and the distributions have non-

identical shapes. According to this study, the newly proposed test 2
tkB and BTW 

can be recommended under similar conditions covered in this study.  

Table 1. Actual Type I Error Rates under Equal Sample Sizes and Homoscedasticity 

n=20 20 20; σ=1 1 1 F 2
tkB  TW BTW 

3 symmetric
Normal - t – Unif 0.0567 0.0475 0.0549 0.0489 
Normal - Unif - gh(0, 0.2) 0.0523 0.0462 0.0517 0.0469 
Normal - gh(0, 0.14) - gh(0, 0.2) 0.0482 0.0509 0.0533 0.0484 
gh(0, 0.14) - gh (0, 0.2) - gh(0, 0.22) 0.0469 0.0490 0.0506 0.0488 
2 symmetric, 1 asymmetric 
Normal - Unif – Chi 0.0844 0.0475 0.0554 0.0448 
Normal - Unif – Exp 0.0639 0.0478 0.0606 0.0504 
Normal - Unif - gh(1, 0) 0.1076 0.0455 0.0540 0.0453 
Normal - Exp - gh(0, 0.2) 0.0624 0.0458 0.0543 0.0474 
1 symmetric, 2 asymmetric 
Normal - Chi – Exp 0.0945 0.0456 0.0609 0.0483 
Normal - Exp - gh(1, 0) 0.1088 0.0505 0.0648 0.0517 
Chi - Exp - gh(0, 0.2) 0.0859 0.0471 0.0601 0.0483 
gh(0, 0.2) - Chi - gh(0.81, 0) 0.0616 0.0498 0.0562 0.0510 
3 asymmetric
Chi - Chi – Exp 0.0633 0.0465 0.0661 0.0474 
Chi - Exp - Exp  0.1044 0.0451 0.0551 0.0456 
Chi - Exp - gh(0.81, 0) 0.0755 0.0518 0.0695 0.0537 
gh(0.81, 0) - gh(0.81, 0) - gh(1, 0) 0.0449 0.0394 0.0460 0.0398 
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Table 2. Actual Type I Error Rates under Equal Sample Sizes and Heteroscedasticity 

n=20 20 20; σ=1 2 4 F 2
tkB  TW BTW 

3 symmetric
Normal - t – Unif 0.0575 0.0474 0.0598 0.0488 
Normal - Unif - gh(0, 0.2) 0.0786 0.0454 0.0525 0.0468 
Normal - gh(0, 0.14) - gh(0, 0.2) 0.0668 0.0412 0.0481 0.0422 
gh(0, 0.14) - gh (0, 0.2) - gh(0, 0.22) 0.0658 0.0469 0.0507 0.0489 
2 symmetric, 1 asymmetric 
Normal - Unif – Chi 0.1018 0.0507 0.0655 0.0496 
Normal - Unif – Exp 0.0577 0.0488 0.0587 0.0481 
Normal - Unif - gh(1, 0) 0.1621 0.0515 0.0675 0.0518 
Normal - Exp - gh(0, 0.2) 0.0800 0.0455 0.0523 0.0462 
1 symmetric, 2 asymmetric 
Normal - Chi – Exp 0.0994 0.0463 0.0579 0.0479 
Normal - Exp - gh(1, 0) 0.1650 0.0517 0.0684 0.0529 
Chi - Exp - gh(0, 0.2) 0.0644 0.0490 0.0630 0.0534 
gh(0, 0.2) - Chi - gh(0.81, 0) 0.0678 0.0506 0.0678 0.0519 

n=20 20 20; σ=1 2 4 F 2
tkB  TW BTW 

3 asymmetric
Chi - Chi – Exp 0.0779 0.0507 0.0629 0.0534 
Chi - Exp - Exp  0.0812 0.0475 0.0588 0.0500 
Chi - Exp - gh(0.81, 0) 0.1107 0.0500 0.0702 0.0518 
gh(0.81, 0) - gh(0.81, 0) - gh(1, 0) 0.1279 0.0571 0.0690 0.0591 

 

Table 3. Actual Type I Error Rates under Unequal Sample Sizes and Homoscedasticity 

n=20 25 30; σ=1 1 1 F 2
tkB  TW BTW 

3 symmetric 
Normal - t – Unif 0.0633 0.0464 0.0493 0.0432 
Normal - Unif - gh(0, 0.2) 0.0482 0.0517 0.0555 0.0488 
Normal - gh(0, 0.14) - gh(0, 0.2) 0.0417 0.0483 0.0496 0.0463 
gh(0, 0.14) - gh (0, 0.2) - gh(0, 0.22) 0.0481 0.0533 0.0529 0.0522 
2 symmetric, 1 asymmetric 
Normal - Unif – Chi 0.0563 0.0500 0.0592 0.0505 
Normal - Unif – Exp 0.0943 0.0466 0.0585 0.0463 
Normal - Unif - gh(1, 0) 0.0880 0.0496 0.0572 0.0477 
Normal - Exp - gh(0, 0.2) 0.0461 0.0480 0.0545 0.0509 
1 symmetric, 2 asymmetric 
Normal - Chi – Exp 0.0906 0.0481 0.0596 0.0479 
Normal - Exp - gh(1, 0) 0.0940 0.0489 0.0611 0.0486 
Chi - Exp - gh(0, 0.2) 0.1081 0.0486 0.0575 0.0478 
gh(0, 0.2) - Chi - gh(0.81, 0) 0.0650 0.0523 0.0566 0.0526 
3 asymmetric
Chi - Chi – Exp 0.0916 0.0486 0.0660 0.0488 
Chi - Exp - Exp  0.1569 0.0481 0.0565 0.0488 
Chi - Exp - gh(0.81, 0) 0.1056 0.0514 0.0650 0.0510 
gh(0.81, 0) - gh(0.81, 0) - gh(1, 0) 0.0493 0.0426 0.0470 0.0428 
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Table 4. Actual Type I Error Rates under Unequal Sample Sizes and Heteroscedasticity 

(Positive Pairing) 

n=20 25 30; σ=1 2 4 F 2
tkB  TW BTW 

3 symmetric 
Normal - t – Unif 0.0423 0.0468 0.0532 0.0474 
Normal - Unif - gh(0, 0.2) 0.0419 0.0486 0.0532 0.0481 
Normal - gh(0, 0.14) - gh(0, 0.2) 0.0372 0.0442 0.0478 0.0467 
gh(0, 0.14) - gh (0, 0.2) - gh(0, 0.22) 0.0375 0.0478 0.0465 0.0466 
2 symmetric, 1 asymmetric 
Normal - Unif – Chi 0.0620 0.0528 0.0621 0.0522 
Normal - Unif – Exp 0.0506 0.0498 0.0561 0.0484 
Normal - Unif - gh(1, 0) 0.1155 0.0502 0.0639 0.0509 
Normal - Exp - gh(0, 0.2) 0.0421 0.0453 0.0457 0.0439 

n=20 25 30; σ=1 2 4 F 2
tkB  TW BTW 

1 symmetric, 2 asymmetric 
Normal - Chi – Exp 0.0924 0.0497 0.0567 0.0474 
Normal - Exp - gh(1, 0) 0.1132 0.0514 0.0635 0.0515 
Chi - Exp - gh(0, 0.2) 0.0399 0.0467 0.0569 0.0473 
gh(0, 0.2) - Chi - gh(0.81, 0) 0.0481 0.0520 0.0635 0.0528 
3 asymmetric
Chi - Chi – Exp 0.0894 0.0509 0.0635 0.0508 
Chi - Exp - Exp  0.1045 0.0435 0.0530 0.0438 
Chi - Exp - gh(0.81, 0) 0.0787 0.0477 0.0642 0.0495 
gh(0.81, 0) - gh(0.81, 0) - gh(1, 0) 0.0885 0.0525 0.0579 0.0521 
 

Table 5. Actual Type I Error Rates under Unequal Sample Sizes and Heteroscedasticity 

(Negative Pairing) 

n=20 25 30; σ=4 2 1 F 2
tkB  TW BTW 

3 symmetric 
Normal - t – Unif 0.1041 0.0462 0.0552 0.0448 
Normal - Unif - gh(0, 0.2) 0.1128 0.0454 0.0554 0.0452 
Normal - gh(0, 0.14) - gh(0, 0.2) 0.0928 0.0477 0.0560 0.0463 
gh(0, 0.14) - gh (0, 0.2) - gh(0, 0.22) 0.0946 0.0495 0.0530 0.0479 
2 symmetric, 1 asymmetric 
Normal - Unif – Chi 0.0777 0.0479 0.0560 0.0483 
Normal - Unif – Exp 0.1324 0.0463 0.0635 0.0469 
Normal - Unif - gh(1, 0) 0.1026 0.0484 0.0566 0.0481 
Normal - Exp - gh(0, 0.2) 0.1172 0.0427 0.0488 0.0420 
1 symmetric, 2 asymmetric 
Normal - Chi – Exp 0.0880 0.0457 0.0608 0.0455 
Normal - Exp - gh(1, 0) 0.1051 0.0472 0.0577 0.0470 
Chi - Exp - gh(0, 0.2) 0.1574 0.0465 0.0577 0.0468 
gh(0, 0.2) - Chi - gh(0.81, 0) 0.0812 0.0467 0.0554 0.0478 
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3 asymmetric
Chi - Chi – Exp 0.1230 0.0453 0.0609 0.0433 
Chi - Exp - Exp 0.1614 0.0518 0.0609 0.0471 
Chi - Exp - gh(0.81, 0) 0.1584 0.0514 0.0633 0.0512 
gh(0.81, 0) - gh(0.81, 0) - gh(1, 0) 0.1165 0.0541 0.0659 0.0549 
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