
Toward a Data-Driven Morphological Analysis 
of Kazakh Language

Abstract

We propose a method for complete morphological 
analysis of Kazakh language that accounts for both 
inflectional and derivational morphology. Our 
method is data-driven and does not require 
manually generated rules, which makes it 
convenient for analyzing agglutinative languages. 
The intuition behind our approach is to label 
morphemes with so called transition labels, i.e. 
labels that encode grammatical functions of 
morphemes as transitions between corresponding 
POS, and use transitivity to ease the analysis. We 
evaluate our method on a fair-sized sample of real 
data and report encouraging results. 

1 Introduction 
Morphological analysis (MA) is one of the 
crucial steps in automated processing of any 
language, and in the case of agglutinative 
languages (ALs) it is hard to overestimate its 
importance. Agglutination causes words to 
acquire complex meanings, effectively 
transforming them into whole phrases. 
Consider a Kazakh word [bolmaghandyqtan]
which translates into English phrases [because 
something/someone is/was absent] or [because 
something does/did not go certain way]. MA 
of the word reveals the underlying phrase: 
[bol-ma-ghan-dyq-tan] → [exist-NEG-PTCP-
NOM-ADV] → [exist - (exist not) - (non 
existing) - (nonexistence) - (due to 
nonexistence)]. Obviously parsing and 
translating ALs require MA to deal with such 
cases. Even POS-tagging in ALs benefits from 

leveraging morphological information [1, 2]. 
Traditionally the MA problem has been 
approached by building finite state transducers 
(FST) [3–5] based on a formal description of 
the morphology of a language. FST-based 
approaches require a set of morphological and 
phonological rules to generate analyses that 
are both grammatically and orthographically 
correct. Although there are open source tools 
that effectively implement transducers [6, 7], 
certain language-specific morphotactics still 
need to be implemented. Whilst 
acknowledging the efficiency and descriptive 
power of transducers, in the present 
exploratory study, we focus on a pure data-
driven approach, that can be later used as a 
baseline method or, indeed, as a lightweight 
morphological analyzer. In this respect, it 
should be noted that in our approach we do not 
consider certain language-specific issues. 
Namely, as we will show later, our method 
does not account for compound words and 
certain phonological rules. We plan to address 
these issues in the future. 
We divide the MA problem into the problems 
of morphological (i) segmentation and (ii) 
ranking. The respective challenges are: (i) 
pruning potentially huge lists of candidate 
segmentations, while trying to keep the correct 
ones (precision-recall trade-off) and (ii) 
employing an effective ranking strategy. To 
address the first challenge we label every 
morpheme with its respective POS-to-POS 
transition label (inflectional morphemes (e.g., 
plural endings, etc.) are converted to a 
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transition of POS to itself). As we will show 
later this allowed us to achieve a data coverage 
of around 97% (i.e. a correct analysis was 
found for 97% of test words) and maintain a 
decent precision-recall trade-off. To rank 
candidate segmentations we use a Hidden 
Markov Model (HMM) and a Markov chain 
model, assuming mutual independence of roots 
and paradigms, and dependence of consequent 
morphemes within paradigms. Evaluating the 
models in terms of precision- and recall-at-k,
we show that, simple as it is, our approach 
achieves encouraging performance. 
The reminder of the paper is organized as 
follows. In the next section we review some of 
the existing work on morphological analysis of 
morphologically-rich languages in general, 
and Kazakh language in particular. In Section 
3 we thoroughly describe the underlying 
methodology of our approach. Section 4 
presents our experiments and discusses the 
results. In Section 5 we conclude the study and 
discuss the future work. 

2 Related Work 
Statistical approaches to the MA problem have 
been successfully applied in the past. In a work 
presented by Hakkani-Tur et al. [8] the 
distribution of morphological analyses for 
Turkish is modeled using n-gram models that 
formulate certain morphosyntactic features, 
which differ by morphotactical relation of 
inflectional groups (IGs) within the word and 
the final IGs of previous words. For Czech 
language, Hajič et al. [9] combined a rule-
based system with a statistical model based on 
HMM, using these approaches sequentially. 
Chrupała et al. [10] cast the problem into a 
classification task, training two maximum 
entropy classifiers that provide probability 
distributions over analyses and word-lemma 
pairs. The authors use a language independent 
set of features, and show that their system 
performs well, achieving respective accuracies 
of 97%, 94%, and 82% for morphologically-
rich languages, such as Romanian, Spanish, 
and Polish. 

Along with supervised methods several 
unsupervised approaches were proposed [11, 
12]. In a work by Creutz and Lagus [11] words 
are initially segmented using a baseline 
algorithm, which is based on a recursive 
minimum description length (MDL) model. 
Then, initial segmentations are reanalyzed by 
more advanced models formulated in a 
maximum a posteriori probability, a maximum 
likelihood or an MDL framework. The authors 
refer to this collection of models as the
Morfessor. A slightly modified version of the 
Morfessor was presented by Kohonen et al. 
[12], who implemented a semi-supervised 
extension to the baseline algorithm. 
Recently there have been attempts to develop 
formal methods for morphological analysis of 
Kazakh. While Sharipbayev et al. [13] 
addressed the problem of Kazakh word forms 
generation for all inflectional parts of speech, 
employing semantic neural networks1  [14], a 
number of works [15–18] resorted to finite 
state approaches. Kairakbay et al. [18] present 
a formal description of the Kazakh nominal 
paradigm, and Zafer et al. [16] provide a rather 
vague description of a two-level Kazakh 
morphology. Both works, however, do not 
report any significant results. Kessikbayeva et 
al. [15] also resort to a finite state morphology, 
and provide a thorough description of the 
nominal and verb paradigms, and formalize 
some of the derivational rules. Using the Xerox 
finite state toolkit [19] the authors conduct 
experiments on a set of 2000 randomly chosen 
analyses and report an overall data coverage of 
96% (precision was not reported). Finally, 
Makazhanov et al. [20] address the problem in 
a context of spelling correction. The authors 
formalize nominal and verb paradigms and 
develop an error tolerant FSA, reporting 83% 
general accuracy on a dataset of 1700 word-
error pairs. 
Our work differs from the aforementioned 
works on Kazakh morphology in that (i) it 
considers both inflections and derivatives; (ii) 

1 Unfortunately the authors do not provide any 
information on the results of their experiments.
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it needs no manual rule generation; (iii) it was 
evaluated on the largest data set available for 
Kazakh. 

3 Methodology 
We divided the task of morphological analysis 
into two major components: (i) segmenting 
input words into morpheme sequences; (ii) 
finding the most probable sequence of 
morpheme-tag pairs (analysis). 
In the absence of a transducer segmenting an 
input word becomes challenging. A naive 
approach is to try labeling all possible letter 
sequences in a given word. This is, however, 
computationally prohibitive and we want to do 
better than that. The first thing that comes to 
mind is to use a morpheme dictionary acquired 
from a labeled data, and search for matches in 
a given word. However, simple matching does 
not account for a natural morpheme order that 
exists in a language. One could parse all the 
morpheme sequences and infer this order, 
eventually ending up building a sort of a state 
machine. This approach, however, has a 
potential of missing correct analyses where a 
certain morpheme sequence occur that had not 
been seen in a training set. 
To account for such omissions, we convert all 
morpheme labels into POS transitions, i.e. for a 
given analysis [bol-ma-ghan-dar] → [exist-
NEG-PTCP-NOM.PL], we construct the 
following representation: [bol_R_VB-ma_VB_ 
VB-ghan_VB_PTCP-dar_PTCP_PTCP]2. 
Now, suppose, that in a training set we have 
seen both morphemes ghan-PTCP and dar-
NOM.PL, but we have not observed them in a 
sequence, i.e. a pattern [ghandar] never 
occurred. Suppose, also, that we have seen a 
sequence of respective allomorphs [gen-NOM-
der-NOM.PL], or in a transitive notation: 
[gen_VB_PTCP-der_PTCP_PTCP]. A method 
that works with conventional morpheme labels 
fails to segment this pattern, because a [ghan-

2 Notice that a plural ending [dar-NOM.PL] is 
converted to a [PTCP_PTCP] transition, i.e. 
inflectional morphemes are replaced by transitions 
of POS to themselves.

PTCP-dar-NOM.PL] sequence had not occur. 
However, due to the fact that we have seen 
transitional labels VB_PTCP and 
PTCP_PTCP, the transition-based method 
constructs a link, and successfully segments the 
pattern. 
The segmentation module is developed using 
recursive function that tries to segment a word, 
from left to right, into substrings which are 
elements of dictionary of morpheme 
transitions. The process stops when a left 
substring (prefix) matches a known root or its 
character length is equal to one. Once we 
acquire all segmentations we convert 
transitions back to conventional morpheme 
tags used in a given language. 
To select the most probable segmentation we 
have conducted ranking experiments using two 
models. The first approach is based on Markov 
chains, where the probability of a sequence of 
morphemes is computed on morpheme bigrams 
using a chain rule (i.e. the current morpheme 
depends only on the previous one): 

where r_t is a POS-tag-labeled root of a given 
word and m_t is a grammatically-labeled 
morpheme. We estimate morpheme bigram 
probabilities using Maximum Likelihood 
Estimation (MLE). To account for a data 
sparseness problem we assign a portion of the 
probability mass to unseen cases by employing 
the Laplace smoothing: 

where N(m_ti,m_ti-1) is the count of a given 
morpheme bigram, |V| denotes the cardinality 
of a set of unique morphemes, and smoothing 
parameter  α = 0.1 (estimated empirically). We 
have to note that while computing the 
probability of the first morpheme that 
immediately follows the root, we assume that it 
depends on the POS of the root. The 
probability of a root is estimated in the 
following manner: 
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where N(r_t) is the count of a given POS-tag-
labeled root and N is the total number of all 
words in the training set. In order to prioritize 
segmentations with vocabulary roots we 
heavily penalize segmentations containing 
OOV roots. As in the previous case, parameter 
α is estimated empirically to be equal to 0.1. 
The described model will be referred to as a 
simple Markov chain (SMC). 
In the second approach we model a distribution 
of segmentations using HMM, and try to 
maximize the posterior probability, P(T|W):

where P(T) denotes a probability of a morpho-
tag sequence, and P(W|T) denotes a probability 
of a word given a tag sequence T. The 
denominator P(W) remains constant for all 
segmentations, and thus can be dropped. 
We compute P(T) using a chain rule: 

the probabilities of morpho-tag bigrams are 
estimated in the following manner: 

where N(ti,ti-1) denotes the count of a given 
bigram, β = 0.9 (estimated empirically) and |V|
is the cardinality of a set of all unique morpho-
tags. We compute P(W|T) as follows: 

where N(mi,ti) is the count of a given tagged 
morpheme (not just a morpho-tag, but also a 
surface form), and |W| denotes the cardinality 
of a set of such all unique tagged morphemes. 
As it can be seen, unlike the previous model, 
this one is more abstract, and operates mostly 
with morpeme tags (except for calculation of 
P(W|T)), leaving out the actual surface forms of 
morphemes. Hereinafter this model will be 
referred to as HMM. 

train, Δ-per fold overall
# roots 22 980 24 255
# mrphs, unigr-s 1 623 1 655
# mrphs, innfl. 332 338
# mrphs, deriv. 1 291 1 317
Table 1. Per fold and overall characteristics of the 
data set

As we mentioned in the introduction, in the 
present study certain language-specific aspects 
of the MA were not addressed. First, we do not 
perform analysis of compounds, i.e. in 
multiple-root words we do not locate every 
single root and analyze them in isolation. 
Instead we collapse all roots and possible 
intermediate paradigms into a single root and 
consider a paradigm attached to the last root 
only. For instance, for a word [ulkendi-kishili]
our method provides the following analysis: 
[ulkendi-kishi-li]→[big-small-ADJ], while the 
correct analysis is [ulken-di-kishi-li]→[big-
ADJ-small-ADJ]. Second, in our analyses we 
do not recover roots or morphemes distorted 
due to the phonetics of the language. For 
instance, while a correct analysis for a word 
[zhughystyghy] is [zhuq-ystyq- y]→[infect-
NOM-NOM-POSS.3SG], our method returns 
[zhugh-ys-tygh-y]→[infect-NOM-NOM-
POSS.3SG], i.e. the root [zhuq] and a 
morpheme [tyq] remain distorted as [zhugh] 
and [tygh] respectively. 

4 Experiments 
We evaluate our models in terms of precision- 
and recall at-k on an annotated subset of 
Kazakh Language Corpus [21]. The data set 
consists of 610 867 word-tokens (78 704 
unique). We perform a standard 10-fold cross-
validation and report averages and standard 
deviations per fold. 
Table 1 shows the characteristics of the data set 
as per training fold and overall data. 
Morpheme stats counts include allomorphs. As 
it can be seen, in our data set there are 1 317 
derivatives, almost four times as much as 
inflectional inflections. To the best of our 
knowledge, for Kazakh language, it is the 
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largest number of derivational morphemes ever 
considered. 
Precision-at-k is calculated as a ratio of correct 
analyses found at top-k positions to the total 
number of correctly analyzed tokens in a fold. 
Recall-at-k is calculated as a ratio of correct 
analyses found at top-k positions to the total 
number of all tokens in a fold. 
Table 2 contains the results of the performance 
of the SMC model. As it can be seen 73% of 
all correct analyses were placed at the first 
position of the ranking lists, and, in terms of 
recall, in 71% of the cases correct analyses 
appeared at the first rank. There is a steady 
growth with increase in k, and for k = 5 the 
model achieves 90% precision and 80% recall. 
In general we observe close values for 
precision and recall for every k. Overall, in
97% of the cases (per fold) a correct analyses 
was provided. The standard deviations per fold 
for precision and recall of around 0.5 and 1.0 
indicate consistent performance of the model. 
Table 3 contains the results of the performance 
of the HMM model. We can see that this model 
performs slightly lower dragging behind SMC 
for about 5% (for k = 1) in both precision and 
recall. We believe that this happens because, in 
contrast to our initial intuition, by ignoring 
surface forms of morphemes HMM loses some 
important information rather than resolving 
ambiguous allomorphic cases. In terms 
precision-recall trade-off we observe a trend 
similar to that of SMC. 
When we analyzed the cases where our models 
failed to put a correct analysis in top-5, we 
found that a lot of such low ranked cases were 
due to context related errors. We have 
performed initial experiment with a context-
sensitive model which utilizes POS information 
of a preceding root and achieved a top-1
precision of 79% on a 95%/5% traint/test data 
split. These initial results suggest that 
incorporating context information may help to 
boost the accuracy of the method. 

k precision at-k recall at-k
1 73.2±0.37 70.9±1.06
2 85.3±0.46 83.2±1.05
3 88.8±0.48 86.3±1.20
4 90.0±0.44 87.8±1.21
5 90.6±0.45 87.7±1.13

Table 2. Precision- and recall-k for SMC average±
standard deviation per fold

k precision at-k recall at-k
1 68.3±0.46 66.2±0.73
2 81.6±0.50 79.0±1.07
3 86.0±0.48 83.7±1.22
4 88.5±0.49 85.7±0.91
5 89.7±0.46 86.8±1.15

Table 3. Precision- and recall-k for HMM average±
standard deviation per fold

5 Conclusion and Future Work 
We have developed a data-driven method for 
morphological analysis of Kazakh language 
that accounts for both inflectional and 
derivational morphology. The method does not 
require formalization, in that all the rules are 
induced directly from labeled data in the form 
POS-to-POS morpheme transitions. Our 
experiments suggest that these transition-based 
morphotactics help in pruning many false 
patterns while keeping correct analyses as 
candidate segmentations. We believe that the 
same technique could be used in the analysis of 
other agglutinative languages, as all that it 
requires is labeled data in a given language. 
We evaluated our method in terms of top-k
precision using Kazakh as a reference 
language. The best of our models achieved 
90% performance in terms of precision-at-k.
The analysis of generated segmentations 
revealed that most of errors occurred due to 
context insensitivity of our method. We have 
already started experiments on incorporation of 
context information, and achieved encouraging 
initial results. Our future work will be 
dedicated to a development of a context-
sensitive extension of the method. In addition, 
we will make necessary adjustments to the 
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method to facilitate compound-sensitive and 
phonetically-correct analyses. 
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