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1. INTRODUCTION 
 

The two-parameter generalized exponential (GE) distribution was introduced by Gupta and 
Kundu (1999). They studied various properties of the model and observed those many of the prop-
erties are quite similar to those of the gamma family and the Weibull family. If a random variable 
X  is distributed two-parameter GE, denoted by ( , )GE   , then its cumulative distribution function 

(cdf) is  
 

( ; , ) (1 ) ,  0,xF x e x                     (1) 
 
with the corresponding probability distribution function (pdf) as 
 

1( ; , ) (1 ) ,  0,x xf x e e x                       (2) 
 

where 0   and 0   are the shape and scale parameters, respectively. There are vast literatures 
when the underlying distribution is GE. For example, the single and product moments of order statis-
tics and the best linear unbiased estimators of the location and scale parameters with known shape 
parameter were derived by Raqab and Ahsanullah (2001). The exact expressions for single and 
product moments of record statistics and the best linear unbiased estimators of the location and scale 
parameters were also obtained by Raqab (2002). The Bayes and empirical Bayes estimators for the 
shape parameter based on record values and prediction bounds for future lower record values were 
obtained by Jaheen (2004). The estimation of stress-strength reliability was derived by Kundu and 
Gupta (2005) when the underlying distributions are independent and have the same scale parameters. 
The Bayesian estimation and prediction of the parameters based on complete and type II censored 
samples were considered by Raqab and Madi (2005). The Bayesian estimation and prediction of the 
parameters based on lower record values were discussed by Madi and Raqab (2007). The Bayes es-
timates of the parameters were obtained by Kundu and Gupta (2008). The minimum variance unbiased 
estimator, the maximum likelihood estimator and the Bayesian estimator for the shape parameter 
based on k-th lower record values were obtained by Malinowska and Szynal (2009).  
 

Let 1 2, ,...X X  be a sequence of continuous random variables. An observation jX  is called an 

upper record value if it exceeds that of than all previous observation. By definition, 1X  is an upper 
record value. We can give an analogous definition for the lower record values. A record data may be 
represented by 1 1 2 2( ) : ( , , , , , , )m mR,K R K R K R K  , where iR  is the i th record value, meaning new 

maximum (or minimum), and iK  is the number trials following the observation of iR  that are needed 

to obtain a new record value 1iR  , which is called inter-record times. There are two sampling schemes 
for generating such a record-breaking data known as inverse sampling scheme and random sampling 
scheme. Under the inverse sampling scheme, units are taken sequentially and sampling is terminated 
when the m th maximum is observed. In this case, the total number of units sampled is a random 
number and mK  is defined to be one for convenience. Under the random sampling scheme, a ran-

dom sample 1 2, ,..., nX X X  is examined sequentially and successive maximum values are record-

ed. In this setting, we have ( )nN , the number of records obtained, to be random and given a value of 

m , 
1

m

i
i

K n


 . 

 
In recent years there has been a growing interest in the study of inference problems associated 

with record values. For example, the Bayesian estimation for the two parameters of some life distribu-
tions, including exponential, Weibull, Pareto and Burr Type XII, based on upper record values were 
considered by Ahmadi and Doostparast (2006). 
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The Bayes estimates for the two parameters of Burr Type XII distribution on the basis of a linear 

exponential loss function were derived by Nadar and Papadopoulos (2011). Statistical analysis of 
record values from the Kumaraswamy distribution was considered by Nadar et al. (2013). 

 
When the underlying distribution is exponential, estimation of the mean parameter was obtained 

by Sameniego and Whitaker (1986) under random sampling scheme and inverse sampling scheme. 
Non-Bayesian and Bayesian estimates were derived for the two parameters of the exponential distribu-
tion based on record values and their corresponding inter-record times under the inverse sampling 
scheme by Doostparast (2009). The optimal random sampling plan and associated cost analysis for 
exponential distribution were studied by Doostparast and Balakrishnan (2010). When the underlying 
distribution is lognormal, non-Bayesian and Bayesian estimates of the parameters were obtained by 
Doostparast et. al. (2012). 

 
In the literature, the maximum likelihood and Bayes estimates for one and two parameters GE dis-

tribution based on the lower record values were derived by Jaheen (2004) and Madi and Raqab (2007), 
respectively. In this paper, we obtained the shape parameter estimations for the GE distribution using 
upper record values with their corresponding inter-record times under the classical and Bayesian 
frameworks when the scale parameter is known. For the sake of comparison we also obtain the esti-
mates based on the upper record values without considering inter-record times. Finally, Monte Carlo 
simulations are performed to observe the effect of the inter-record times in estimations. 

 
The paper is organized as follows. In Section 2, we derive the maximum likelihood estimation 

(MLE) of the parameters under the inverse sampling scheme. In Section 3, when the scale parameter 
  is known, we obtain the Bayesian estimations of the shape parameter   under the symmetric and 
asymmetric loss functions. In Section 4, a computer simulation study is done to compare the different 
estimators discussed in early sections and the results are reported. Moreover, real data is used to illus-
trate the findings. Finally, we conclude the paper in Section 5. 

 
2. CLASSICAL ESTIMATION 

 
In this section, we consider the parameter estimation of GE distribution under inverse sampling 

scheme. 
 

2.1. Inverse Sampling Scheme 
 
Let 1 2, ,...X X  be independent identical distributed (i.i.d.) random variables, each drawn from a 

population with cdf (.)F  and pdf (.)f . Then the likelihood function associated with the sequence 

1 1 2 2( , , , , , , )m mR K R K R K  is given by Hofmann and Nagaraja (2003) 
 

   1

1

,
1

( , ) ( ) ( ) ( )i

i

m
k

i i ir
i

L r k f r F r I r







             (3) 

 
where 0r   , 1mk   and ( )AI x  is the indicator function of the set A . From the equations (1)- (3), 
we have 
 

1
1 1 1 1

( , ; , ) exp ln(1 ) ln(1 ) ,  i i

m m m
r rm m

i i m
i i

L r k r k e e r r        

  

           
 

     (4) 

 
and so the log-likelihood function is  

 
1 1 1 1

( , ; , ) ln ln ln(1 ) ln(1 )i i

m m m
r r

i i
i i

l r k m m r k e e        

  

         .    (5) 
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The maximum likelihood estimates (MLEs) of   and   are given by 
 






11

ˆ- )e-n(11

ˆ

iR
iK

m



                (6) 

 

and ̂  is the solution of the following non-linear equation 
 

(
)1(n11 11

 
 








m

i

m

r

r
i

i i

i

e

er
r

m





.0)1ˆ ik  

 

Therefore, ̂  can be obtained as the solution of the non-linear equation of the form ( )h   , where  
1

1 1 1

1 1

( )
1 1 ln(1 )

i

i i
i

rm m
i i i

mr r
ri

i

r k re m
h m

e e k e



 








 
 



 
 
  

    

 


.        (7) 

 

Since ̂  is a fixed point solution of the non-linear equation (7), its value can be obtained using an it-
erative scheme as like: 
 

( ) ( 1)( )j jh    ,                   (8) 

 

where ( )j  is the j th iterate of ̂  . The iteration procedure should be stopped when ( ) ( 1)j j    is 

sufficiently small. 
 
2.2. MLE Estimation When   is Known 

 
In this case, we assume that 1   without loss of generality. Then, we have from (4)   

 

.  ,)1(n1)1n(1exp),;1,( 1
1111

m

m

i

rr
m

i

m

i
i

m rreekrkrL ii 








 






    (9) 

 

It is clear that U  is a complete sufficient statistic for   and the MLE of   is 
U

m
M ̂  where 

1 1

ln(1 )i

m
R

iU K e



   . The distribution of M̂  can be obtained by using the moment generating 

function of U , which is given as 
1

( ) ,  

1
mM t t

t




 
  
 

. Therefore, U  is distributed Gamma with 

parameters ( , )m   with the pdf  
 

1( ) ,  0
( )

m
m uf u u e u

m
   


. 
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It is easily seen that 
1

)ˆ(



m

m
E M

  and an unbiased estimator of   is given by 
U

m
U

1
ˆ


  

Moreover, Û  is a best unbiased estimator from Lehmann-Scheffé Theorem. 

 
3. BAYESIAN ESTIMATION 
 

Bayesian approach has a number of advantages over the conventional frequentist approach. Bayes 
theorem is the only consistent way to modify our beliefs about the parameters given the data that actu-
ally occurred. The beliefs about the parameter are called prior distribution. Any prior information 
about the parameters is considerably useful. We need to some prior distributions of the unknown pa-
rameters for the Bayesian inference. In this section, we consider the Bayes estimate of the shape pa-
rameter   when the scale parameter   is known. 

 
We assume that   has a Gamma prior with parameters 1 1( , )a b  and its pdf denoted by ( )  . 

Then, the posterior density function of   is  
 

1

1 11 ( )1

1

0

( )( ; , ) ( )
( , )

( )
( ; , ) ( )

m a
m a b Ub UL r k

r k e
m a

L r k d

    
   


   




 

 


, 

 

that is ,r k  is distributed Gamma with parameters 1 1( , )m a b U  . We know that the Bayes esti-

mate of   under squared error (SE) loss function, BŜ  , is the mean of the ,r k . Therefore,  

Ub

am
BS 




1

1̂ .                      (10) 

 
It is well known that the use of symmetric loss functions may be inappropriate in many circum-

stances, particularly when positive and negative errors have different consequences. The use of asym-
metrical loss function, which associates greater importance to overestimation or underestimation, can 
be considered for the estimation of the parameter. A number of asymmetric loss functions are pro-
posed for use, among these, one of the most popular asymmetric loss functions is linear-exponential 
loss function (LINEX), was introduced by Varian (1975). The LINEX loss function can be expressed 
as  

( )( , ) ( ) 1,  0vL e v v         , 
 

where   is an estimator of  . The sign and magnitude of v  represents the direction and degree of 
asymmetry, respectively. If 0v  , the overestimation is more serious than underestimation, and vice 
versa. For v  close to zero, the LINEX loss is approximately SE loss and almost symmetric. It is easily 

seen that the value of ( )X  that minimizes  ( , ( ))XE L X    is  

 

 )(n1
1ˆ 

 v
XBL eE

v
 , 

 

provided ( )v
XE e 


  exists and is finite. Here (.)XE  denotes the expected value with respect to the 

posterior density function   given X .  
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Therefore, the Bayes estimate of   under the LINEX loss function, BL̂  , for our case  
is given by  














 




Ub

v

v

am
dkr

v
eE

v
v

krBL
1

1

0

v-
),(| 1n1),|(en1

1
)(n 1

1
ˆ  

 .             (11) 

 
If we use the Jeffrey's non-informative prior, that is ( ) 1 /   , then we have that ,r k  is 

distributed Gamma with parameters ( , )m U . Hence, the Bayes estimates of   under the SE and 
LINEX loss functions are obtained as  
 







 

U

v

v

m

U

m
BLBS 1n1ˆ  ,ˆ 0,0,  .                (12) 

 
4. SIMULATION STUDY 
 

In this section, we present the analysis of two data sets. The first data set is artificial and the sec-
ond is a real life one.  
 
4.1 Simulated Data 
 

In order to compare the different estimators, Monte Carlo simulations are performed by using dif-
ferent sample sizes and different priors. All the programs are written in Matlab 2010a. All the results 

are based on 1000 replications. The estimated risk (ER) of  , when ̂  is estimated by   , is given by 

2

1

)ˆ(
1

)( i

N

i
iN

ER   


under the SE loss function. Moreover, the estimated risk of   under the 

LINEX loss function is given by.  


 
N

i
ii

v ve
N

ER ii

1

)ˆ( 1)ˆ(
1

)(   . 

 
 
In the Table 1, we consider the case where 1   and   has Gamma prior with parameters 

1 1( , ) (10,5)a b   and 1 1( , ) (16,6)a b  . When the estimates obtained without taking inter-record times 

into consideration, the results are given in Table 2 and is denoted by * . The ML and Bayesian esti-
mates for SE and LINEX loss functions are listed in both Tables 1 and 2.  

 
 
In Tables 1 and 2, it is observed that as the sample size increases the estimated risk of the esti-

mates generally decrease. The ERs of the MLEs are greatest among all estimators. Moreover, the ERs 
of the Bayes estimators under the SE loss function are smaller than the MLEs, as expected. Further-
more, it is observed that the ERs for estimates of   are smaller than that of * . It is quite natural to 
see such a result when more information is available. As a result, the simulation illustrates that consid-
ering inter-record times is increasing the accuracy and the precision of the estimates. 
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Table 1. Estimations of  and ERs when 1   by upper record values with considering inter-record     

times.  
 

1 1( , )a b  m    
M̂  Û  BŜ  BL̂  

 v -2 -1 1 2 
(10,5) 3 1.9931 3.0195 2.0130 2.0020  2.4069 2.1788 1.8595 1.7413
   8.0356 3.1027 0.3329  0.8988 0.1918 0.1468 0.5235
 5  2.5858 2.0686 2.0096  2.3552 2.1633 1.8826 1.7751
   3.1378 1.7632 0.2881  0.7410 0.1626 0.1288 0.4627
 8  2.2811 1.9960 1.9992  2.2762 2.1251 1.8920 1.7991
   0.9970 0.6900 0.2341  0.5551 0.1266 0.1088 0.4052
 10  2.1585 1.9427 1.9752  2.2148 2.0853 1.8798 1.7961
   0.6242 0.4840 0.2341  0.5551 0.1266 0.1088 0.4052
           
(16,6) 3 2.6295 4.1175 2.7450 2.6621  3.1303 2.8704 2.4900 2.3447
   43.0376 18.0657 0.4004  0.9879 0.2212 0.1840 0.6852
 5  3.2998 2.6398 2.6457  3.0575 2.8312 2.4898 2.3562
   5.4854 3.2035 0.3545  0.9297 0.1967 0.1632 0.6062
 8  3.0307 2.6519 2.6505  3.0054 2.8126 2.5115 2.3905
   2.0975 1.4729 0.3005  0.7477 0.1653 0.1395 0.5239
 10  2.8375 2.5538 2.6272  2.9449 2.7735 2.5001 2.3883
   1.0057 0.7888 0.2870  0.7147 0.1581 0.1337 0.5062

 
The first and second rows represent the average estimates and estimated risks. 

 
Table 2. Estimations of  and ERs when 1   by upper record values without inter-record times. 
 

1 1( , )a b  m    *
M  *

BS  *
BL  

     v -2 -1 1 2 
(10,5) 3 1.9931 3.9281 2.0868  2.1171 2.1645 1.4116 1.4591 
   36.1005 0.3712  1.4297 0.2126 0.2374 0.6736 
 5  3.8867 2.0940  2.1248 2.1722 1.4165 1.4639 
   27.5305 0.3704  1.3789 0.2108 0.2362 0.6739 
 8  3.7863 2.0899  2.1205 2.1679 1.4138 1.4612 
   24.7304 0.3716  1.4819 0.2165 0.2364 0.6720 
 10  3.5952 2.0702  2.0995 2.1469 1.4009 1.4483 
   19.2838 0.3547  1.4428 0.2072 0.2380 0.6711 
          
(16,6) 3 2.6295 4.9898 2.8882  2.8628 2.9469 2.0031 2.0872 
   79.2675 0.4908  1.5302 0.2443 0.2742 0.7696 
 5  5.1286 2.8831  2.8576 2.9416 1.9996 2.0837 
   59.4947 0.4906  1.5184 0.2436 0.2756 0.7717 
 8  5.1273 2.8875  2.8621 2.9462 2.0027 2.0868 
   50.1313 0.4862  1.5559 0.2425 0.2733 0.7662 
 10  4.6478 2.8857  2.8603 2.9443 2.0015 2.0855 
   35.9188 0.4888  1.7374 0.2471 0.2738 0.7623 

 
     The first and second rows represent the average estimates and estimated risks. 
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4.2 Real Life Data 
 

In this example we present a data analysis of the amount of annual rainfall (in inches) during 
Januuary recorded at Los Angeles Civic Center from 1900 to 2006 (see the website of Los Angeles 
Almanac: www.laalmanac.com/weather/we08aa.htm). The upper record values of this data and their 
corresponding inter-record times are given in Table 3.  
 

Table 3. Record and inter-record times data arising from annual rainfall data 8m   
 

i  1 2 3 4 5 6 7 8 

iR  2.49 2.57 3.85 7.02 7.27 10.35 13.3 14.94 

iK 4 1 1 2 5 2 53 1 
 
 
The sample is tested if the underlying distribution is ˆ( ,0.25)GE   by using the Kolmogorov-

Smirnov (K-S) test. We compute the K-S distance between the empirical distribution and the fitted 
distribution functions when the parameters are obtained by MLE and Bayesian methods. All results 
about this data are presented in Table 4. It is observed that the GE distribution when 0.25   pro-
vides an adequate fit for data. The goodness of fit test strongly suggest to use the Bayesian estimates 
for the parameter  , because of bigger p values. 
 
 
Table 4. The estimates of  , Kolmogorov-Smirnov distances and the corresponding p -values between, 

the empirical and the fitted distribution function when 1 10.25,  2.9879,  0.3868a b    . 
 

Methods  Estimates K-S distance p -value 

MLE 1.0400 0.4494 0.05p 

Bayes (SEL) 1.3600 0.3975 0.1 0.2p   

Bayes(LINEX,v=-2) 1.5626 0.3683 0.1 0.2p   

Bayes(LINEX,v=-1) 1.4518 0.3841 0.1< p <0.2 

Bayes(LINEX,v=1) 1.2822 0.4089 0.1< p <0.2 

Bayes(LINEX,v=2) 1.2151 0.4190 0.05< p <0.1 
 
 

 
5. CONCLUSION 
 

In this study, we compared the different estimations for the shape parameter when the scale pa-
rameter is known for the two-parameter generalized exponential distribution. It is observed that the 
Bayesian estimators have a smaller estimated risk and this result does not change for the different val-
ues of the prior parameters in Monte Carlo simulation. Moreover, the simulation illustrates why the 
inter-record times should be considered. For the real life data prior parameters can be choosen by 
method of moments. An application of goodness of fit test on annual rainfall data suggests to use 
Bayesian estimations of the parameter  . 
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