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ABSTRACT

Smoothing methods that use basis functions with penalization can be formulated as fits in form
linear mixed effects models. This allows such models to be fitted using standard mixed models
structures. In this paper we provide an estimation and inference for linear mixed models using restrict-
ed maximum likelihood and penalized spline smoothing, and describe the connection between the two.
To this end, a real data example is considered and model is fitted in R using different package. We see
that penalized spline smoothing expressed in form of linear mixed model gives the better results than
standard mixed effects model.
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DOGRUSAL KARMA ETKIiLIi MODELLERDE TAHMIN VE
CIKARSAMALAR: BiR KARSLASTIRMALI CALISMA

0z

Cezalandirma ile taban fonksiyonlar1 kullanan diizeltme yontemleri dogrusal karma etkili model-
lerde uyumlar olarak formiile edilebilir. Bu durum standart karma model yapilarini kullanarak bu tiir
modellerin tahmin edilmesine olanak saglar. Bu ¢alismada dogrusal karma etkili modeller i¢in sinirli
maksimum olabilirlik ve cezali splayn diizeltme yontemi kullanarak tahmin ve ¢ikarsama saglanmakta
ve bu iki yontem arasinda baglant1 tanimlanmaktadir. Bu amagla bir gercek 6rneklem farkli paketler
kullanarak R ortaminda tahmin edilmistir. Goriiliiyor ki, dogrusal karma etkili model seklinde formiile
edilen cezali splayn diizeltme standart karma etkili modelden daha iyi sonuglar vermektedir.

Anahtar Kelimeler: Karma etkili model, Yari-parametrik regresyon, Cezali splayn,
diizeltme parametresi, Genellestirilmis ¢apraz gegerlilik

" Faculty of Medicine, Department of Biostatistics, University of Dumlupmar, 43100, Kiitahya, Turkey.
Tel: 0506 473 18 73, E-mail: ozlemaksoy@mu.edu.tr

* Faculty of Science, Department of Statistics, University of Mugla, 48000, Mugla Sitki Kogman, Turkey.
Tel:, 0533 023 04 65, E-mail: duaydin@mu.edu.tr

Recieved: 28 November 2012  Revised: 21 March 2013  Accepted: 17 June 2013



Bilim ve Teknoloji Dergisi - B - Teorik Bilimler 2 (2)
Journal of Science and Technology - B- Theoretical Sciences 2 (2)

1. INTRODUCTION

Many common statistical models can be expressed as linear models that incorporate both fixed
effects, which are parameters associated with an entire population or with certain repeatable levels of
experimental factors and random effects, which are associated with individual experimental units
drawn at random from a population. A model with both fixed effects and random effects is called a
mixed-effects model. In order to fit linear mixed-effects models, such as maximum likelihood (ML)
and restricted maximum likelihood (REML) method, standart methods, can be used (Pinheiro and
M.Bates, 2000).

Linear mixed effects models are powerful and useful approaches to many applications. They have
received considerable attention from both the theoretical and applied points of view. Much of work on
linear mixed effects models was motivated by the analysis of data animal breeding experiments and
driven by the need to incorporate heritability and generic correlations in a parsimonious fashion. They
have also played an important role in establishing quality control procedures and determination of
sampling, among other applications (Davidian and Giltinan, 1996, McCulloch and Searle, 2001,
Verbeke and Molenberghs, 2000, Vonesh and Chinchili, 1997). Another note worthy reference is
(Diggle, Heagerty, Liang and Zeger, 2002) in which the commonalities between longitudinal data
analysis and spatial statistics are observed. Several authors have pointed out a close relationship
between the mixed model and penalized splines (P-splines).

Eilers and Marx (Eilers and Marx, 1996) introduced smoothing with P-splines, extending an
original idea of O’Sullivan (O’Sullivan, 1986). This powerful and applicable technique based on the
minimization problem of penalized residuals sum of squares have gained much popularity as a flexible
tool for smoothing and nonparametric models. Moreover, P-spline smoothing using truncated power
basis functions can be easily extended to a linear mixed effects model by treating the basis functions
as random variables. Here we refer to (Ruppert, Wand and Carroll, 2003) for P-splines using truncated
power functions, knots based on quantiles of the independent variable and a penalty parameter. The
ability to combine nonparametric regression and mixed model regression with P-splines has recently
been used in other contexts. Parise et al. (Parise, Wand, Ruppert and Ryan ,2001) Coull et al. Provide
examples of using P-splines in the construction of mixed effect regression models for the analysis of
data containing random effects. In a recent book, Ruppert et al. present an excellent overview of
theory and applications of semi-parametric models based on P-splines. However, they used different
ingredients: truncated power functions in the basis, knots at quantiles of the independent variable, and
a ridge penalty. This might be confusing to potential users: which type of splines should be used,
how should knots be spaced and how should a smoothing parameter be chosen.

This paper is organized as follows. In section 2, we give a brief summary of the estimation based
on REML for linear mixed effect models. Estimation procedur in linear mixed effect models are given
in Section 3. Section 4 compares these methods via a real example, and finally, the conclusion and
recommendations are presented in section 5.

2. LINEAR MIXED EFFECT MODELS

Many common statistical models can be expressed as linear models that incorporate both fixed
effects, which are parameters associated with an entire population or with certain repeatable levels of
experimental factors, and random effects, which are associated with individual experimental units
drawn at random from a population. A model with both fixed effects ana random effects is called a
mixed-effects model (see, West et al., 2007; Brown ana Prescott, 2006).

Using the hierarchal notation of Laird and Ware (1982), we can express the linear mixed effects
(LME) model as

V,=XB+Zu +¢, i=12,.,m, )
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where ;

o y, is the n, x1response vector for observations in the i th group.

J X, is the n, X p model matrix for the fixed effects for observations in group i.

o B isthe px1 vector of fixed-effect coefficients.

o Z, is the n, x g model matrix for the random effects for observations in group i .
. u, is the g x1 vector of random-effect coefficients for group i.

J g, is the n; x1 vector of errors for observations in group i .

J D is the g x g covariance matrix for the random effects.

J R, is the n, X n, covariance matrix for the errors in group i.

We assume taht the ¢ random effects in the u, vector follow a multivariate normal distribution,
with mean vector 0 and a variance —covariance matrix indicated by D:

u, ~N(0,D). )

The main diagonal elements of the D matrix represent the variances of each random effect in#, ,

and the off-diagonal elements represent the covariances between two corresponding random effects.
Elements of symmetric and positive definite matrix D are defined as following way (West et al.,
2007):

Var(u,)  cov(u,;,u,,) N cov(u,;,u,
cov(u,;,u,;)  Var(u,,) cov(uy,,u,,

D=Var(u)= Dol ' :
cov(uy,u,) cov(uy,u,) - Var(u,)

q*q
The variance and covariances elements of the D matrix are defined as functions of a small set of
covariance parameters stored in a vector denoted by @,,. Note that the vector 8,, imposes structure (or
constraints) on the elements of the D matrix. In this case, the vector 8, contains two parameters:

6, = (62 ol ) :

ul

!

Finally, the &, = (6‘1[ &y gn_i) vector in Eq. (1) is a vector of 7, residuals. We assume

1
that the & vector is random variables that follow a multivariate normal distribution with a mean
vector 0 and a positive definite symmetric covariance matrix R, :

¢ ~N(O,R,) 3)

We also assume that residuals associated with different subjects are independent of each other.
Further, we assume that the vectors of residuals, ¢,...,¢,, and random effects, u,,...,u  are

>¥m? m

independent of each other.
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We discuss some of the more commonly used covariance structures for the R, matrix.The

simplest covariance matrix for R, is the diagonal structure,in which the residuals associated with
observations on the same subject are assumed to be uncorrelated and to have equal variance. The
diagonal R, matrix for each subject i has the following structure.

Var(e,)  cov(e,,ey,) cov(e;;» &, o 0 0
cov(e,;,e,)  Var(ey,) cov(y,;, ¢, 0 o> 0

R, =Var(e) = Do : =
cov(e»¢,,) cov(ey,e,;) - Var(e,)) 00 - o

The diagonal structure requires one parameter in €, , which defines the constant variance at each
time point: 8, = (%) All software procedures that we discuss use the diagonal structure as the
default structure for the R; matrix.

The compound symmetry structure is frequently used for the R; matrix. In the compound
symmetry covariance structure, there are two parameters in the @, vector that define the variances
and covariances in the R, matrix:

6, = (0'2 0'1)

The first-order autoregressice structure, denoted by AR(1), is another commonly used covariance
structure for the R, matrix. The AR(1) structure has only two parameters in the 8, vector that define

. . . . . 2 .
all the variances and covariances in the R, matrix: a variance parameter, o~, and a correlation
parameter, p.

Note that o> must be positive, whereas p can range from -1 to 1.The AR(1) structure is often

used to fit models to data sets with equally spaced longitudinal observations on the same units of
analysis. This structure implies that observations closer to each other in time exhibit higher correlation
than observations farther apart in time (West et al., 2007).

3. ESTIMATION IN LINEAR MIXED EFFECT MODEL

In the LME, we estimate the fixed parameters vector, B , and the covariance parameters, 8 (i.e.,

6,and @, for the D and R; matrices, respectively). In this section, we discuss restricted maximum

likelihood (REML) estimations and penalized smoothing splines, which are methods commonly used
to estimate these parameters.

3.1. Restricted Maximum Likelihood (REML) Estimation

REML estimation is an alternative way of estimating the covariance parameters in @ . REML
estimation, which is also sometimes called as called residual maximum likelihood estimation, was
introduced by Patterson and Thompson (1971). Alternative and more general derivations of REML are
given by Harville (1977), Cooper and Thompson (1977), and Verbyla (1990).
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The REML estimates of @ are based on optimization of the following REML log-likelihood
function:

Ly (0)==0.5(n—p)in(2z) 0.5y In[ det(V;) ]
~0.5 (¥, 'r)-0.5 In| det( XV, "X, )|
In Eq. (4) r, and I}l (an estimate of ¥} ) can be defined as follows, respectively;

-1
n=y-X, (ZX;VZ-“X,) XYY, | -

@

V.=ZDZ +R . ©)

Once the Vi matrix has been obtained, REML based on the ﬁ fixed-effects parameter esmations and

Var ([3) can be computed as following way:
1

(x| S 0

-1
A -l
Var(B) = (ZX,V,. Xi] | ®
3.2. Penalized Smoothing Spline

Suppose observed are n pairs of measurements, (x;,¥,),i =1,2,...,n satisfying the model
yi:f(xi)+8i’ O
where f is unknown regression function and ¢,,...,&, are independent errors random variables with
common mean zero and variance o..let # <...<f, be a set of fixed knots
min(x,) < t, <...<t, <max(x;)and let(x), = maX(O,x) It is assumed that f(x) can be well

approximated by a pth-degree P-spline with truncated polynomial basis

S =+ Bx+...+B,x" +iuj(x—tj)ﬁ , (10)

. . T T .
where p>1 is an 1nteger,[3:[,b’0,ﬂl,...,ﬂp] and u:[ul,...,uK] are vectors of regression

coefficients fort the parametric and spline portions of the model, respectively. Note that Af(x) is a
linear combination of the set of functions1,x,...,x”,(x—1,)",...,(x — ¢, )", known as the truncated
power basis of degree p with K knots ¢,,%,,...,f, The number of knots, K must be selected in
implementing the regression spline. A reasonable default rule for the knot locations is
t = {(/ +1)/ (K + 2)} th sample quantile of the unique x; s for j=1,..., K
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To give an explicit expression for f(x) in matrix notation, let denote the design matrices

I x .. x (x,=x)l o (=K )]
— P _ P

X = I x, .. x5 and Z = (x, =)} (x, =& )? ’
1 x, ... x/ (x, —x,)" ... (x,—Kxg)?

then model (10) can be expressed as a linear mixed effects model

2
y=XB+Zu+g, where [j~([g}{a€;1 O'(Zli|]. 1n

where y is a vector of observed responses,and X and Z are design matrices associated with a vector
of fixed effects B and a vector of random effects u, respectively. The connection between penalized
regression and linear mixed effect models can be determined by considering that the estimators 3 and

U minimize the penalized least squares

P}} =arg min(”y-Xﬁ-Zu”2 +/1||u||2), (12)
u B.u
where ||u|| is the Euclidean norm of the vector u, A >0 denotes smoothing parameter. In this paper,
the smoothing parameter A is selected by minimizing the function generalized cross-validation
(GCV) (Eubank, 1999; Green and Silverman, 1994).

The likelihood approaches such as maximum likelihood (ML) and restricted maximum likelihood
(REML) based smoothing parameter selection methods depend on the linear mixed model
representation of penalized spline. The minimization of the residual sum of the squares ||y -XB- Zu”2

in Eq. (12) is subject to the penaltyﬁ,”u”2 . The solution for [§ and U that minimizes the penalized least
squares in (12)can be defined as (Wand,2003)

A

{B}:((?(>+1D)JCTy, 13)
u
where C = [X Z], D =diag(0,,, 1,....,1) ,the vector 0, denoting the p +1-dimensional zero vector

where m is the dimension of the vector B of fixed regression coefficients.

Equation (11) is also recognizable as linear mixed effect models and the best linear unbiased
estimators (BLUEs) of y [27]:

f=Xp+2Zi, (14)

where the estimators [3 and @l can be treated as an estimator of f = [ S, f (xn)]T . Note that the

A

fitted values / can be expressed as
f,=c(c'c+p) Cly. (15)
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4. CASE STUDY

In this sutudy, the sample data are analyzed with normal linear mixed effects models and
penalized spline model separately. Within the mixed models implementation of penalized splines the
amount of smoothing is controlled by the relative magnitude of the relevant variance component and
the residual error variance. Typically this parameter is estimated from the data, and in a real example
in the text the amount of smoothing was determined by the restricted maximum likelihood estimation
(REML) estimates of the variance parameters.

Data set used in this case study is taken from Organisation for Economic Co-operation and
Development (OECD)’s, and given in Table 1. Data metioned here covers nominal gross domestic
product (ngdp) of 34 countries for different years, from 2006 to 2010. All coputations are calculated
by using R.2.13 software.

Table 1: OECD Data set for case study

Country Year NGDP t
Australia 2006 ?,5 l
iAustralia 20 10 é,9 5
IiJnited States i2006 §,9 i66
I:Jnited States 50 10 1 ,6 1 70

Countries: Australia, Austria, Belgium, Canada, Chile, Czech Republic, Denmark, Estonia, Finland,
France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Kore, Luxemburg, Mexico,
Netherlands, New Zealand, Norway, Poland, Portugal, Slovak Republic, Slovenia, Spain, Sweden,
Switzerland, Turkey, United Kingdom, United States

NGDP: Nominal Gross Domestic Product .

4.1 Empirical Results

Model (1) is easily fitted by REML method for data set called as “Ozlem”. This estimation
method for the parameters in LME models is described in detail in section 3. We obtain the REML fit
of the model given (1) as following way, Outcomes obtained by mixed effects model using REML are
given following way:

Data: Ozlem
AlIC BIC logLik
725.3883 744.1321 -356.6942

Random effects:

StdDev Corr
(Intercept) 1.658442762 Intr)
time 0.001295467 0.002

Residual 1.638233543
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Fixed effects: ngdp ~ time
Value Std.Error DF  t-value p-value
(Intercept) 3.524118 0.4095414 135 8.605033 0.0000
time -0.238235 0.0888460 135 -2.681442 0.0082

Correlation:
(Intr)
time -0.651
Number of Observations: 170
Number of Groups: 34

We see that the REML estimates for the parameters have been calculated as

Bo=3.524118, B,=-0.238235 and ©,=1.658453, 6. = 1.638235
corresponding to a log-restricted-likelihood of -356.6942.

The output of the summary function includes the values of the Akaike Information Criterion
(AIC) (Sakamoto, Ishiguro and Kitagawa, 1986) and Bayesian Information Criterion (BIC) (Schwarz,
1978), which is also sometime called as Schwarz’s Bayesian Criterion (SBC). These are model
comparison criteria evaluated as

AIC = -2 log Lik + 2npar,
BIC = -2 log Lik + npar log(N).

where npar indicates the number of parameter in the model and N total number of observations used to
fit the model. Under these definitions, “smaller is better.” That is, if we are using AIC to compare two
or more models for the same data, we prefer the model with the lowest AIC. Similarly, when using
BIC we prefer the model with the lowest BIC.

We should examine the fitted model both graphically and numerically. The 95% confidence
intervals provides an indication of the precision of the estimates of the variance components

Approximate 95% confidence intervals

Fixed effects:

lower est. upper
(Intercept) 2.7141678 3.5241176 4.33406746
t -0.4139449 -0.2382353 -0.06252569

attr(,"label™)
[1] "Fixed effects:"

Random Effects:
Level: goverment

lower est. upper
sd((Intercept)) 1.241933 1.658453 2.214667

Within-group standard error:
lower est. upper
1.454038 1.638235 1.845766
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Figure 1: Plots of standardized residuals versus fitted values for each country

We see that o is estimated relatively precisely. Further more, the plot of the standardized
residuals versus the fitted values, shown in Figure 1, does not indicate a violation of the assumption of

constant variance for the & error terms.
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Residuals
Figure 2: Boxplots of the residuals for each country

Figure 2 shows the boxplots of the residuals for each country. According to Fig. 2, it can be said
that model is adequate for the data set called as “Ozlem”. A boxplots of the country against residuals
may also reveal one or more unusually large residuals. These points maybe potential outliers. In other
words, the values of some residuals depict an unusual structure. However, since the residuals are now
centered around zero, this plot do not exhibit any strong unusual pattern, although the large residuals

e.. @€ € i
Chile | “Turkey “apd ~CzechRepublic show up clearly.
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Figure 3: Plots of ngdp versus fitted values for each country

Figure 3 contains plots of ngdp against time for each country with the straight line fits from
model(1) included. Once again these plots have been ordered from bottom left to top right in terms of
increasing average value of ngdp. As can be seen from Fig.3 estimated random intercept for Japan is
lower than others.
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Figure 4: Boxplots of the ngdp for each country

Boxplots of the ngdp for each country are indicated in Figure 4. As shown Figure 4, it can be said
that the ngdp values of Turkey is demonstrated much more different behaviour than other countries.
We would examine residual plots such as Figure 2 for deficiencies in the model. There are no alarming
patterns in this figure.
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Model (1) is also fitted by penalized least squares in form of linear mixed effect models for the
same data set. This estimation method for the parameters in LME models is described in detail in
section 3. The penalizd spline fits are obtained by using R Software. Outcomes obtained by mixed
effects model using penalized splines are given following way:

Model(1): ngdp ~ time + s(goverment), correlation = corAR1 (form=1]time),
method=""REML'")

Parametric coefficients:
Estimate Std. Error t value Pr(c|t])

(Intercept) 3.5373 0.4137 8.551 1.73e-14
time -0.2429 0.0792 -3.067 0.00259
Approximate significance of smooth terms:

edf Ref.df F p-value

s(goverment) 25.54 25.54 2.737 8.84e-05
R-sg.(adj) = 0.518 Scale est. = 2.6753 n = 170

Approximate 95% confidence intervals for variance-covariance

Random Effects:
Level: goverment

lower est. upper
sd(Xr - 1) 8.079208 14.18957 24.88740

Correlation structure:
lower est. upper
Phi 0.1767087 0.3418008 0.4881868

Within-group standard error:
lower est. upper
1.432647 1.635636 1.867387

We see that the penalized spline estimates for the parameters have been calculated as.
Bo=3.5373, B;=-0.2429

It can be seen that fitted values carried out from the model (1) are well enough and significant.
Moreover, 51.8 % of variability in the ngdp explained by the regressor X . Besides, 95 % confidence
interval of variance parameters is shown from outputs of the summary. The confidence interval for
correlation parameter, p is easily picked out, and provides strong evidence the AR1 model is
preferable to and independence model (p=0), while interval for o is (1.432647 < o < 1.867387
). Note that, for smoothing parameter is also available. Under the random effects heading the
interval for government relates to the smoothing parameter for the smooth term.

5. CONCLUSION AND RECOMMENDATIONS

Notice that the restricted maximum likelihood estimate of o is 1.638, the same as the penalized
spline estimate. Equality of the restricted maximum likelihood and penalized spline estimates of o

occurs for this simple model, but will not occur in general. The penalized spline estimate of o,

1.635, is smaller than the restricted maximum likelihood estimate, 1.638. Finally the restricted
maximum likelihood estimate of, B, and f;, is the same as the penalized estimate. Again, exact
equality of the restricted maximum likelihood and penalized estimates of the fixed effects need not
occur in more complex models, but it is commonplace for them to be nearly identical. However, it
seems that penalized spline has provided an improvement in variances of subjects, and that model has
given better fits than standard mixed effects model.
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