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ABSTRACT

In this study, the differential transformation method is used for finding the numerical solution of a
second-order Neumann problem. Numerical examples are included to demonstrate the efficiency and
the accuracy of this method for the studied problem and a comparison is made with the existing
results. The present method is easy to implement and yields very accurate results.
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NEUMANN SINIR SARTLI iKINCi MERTEBEDEN BIR DIFERENSIYEL
DENKLEMIN DIFERENSIYEL DONUSUM METODU iLE YAKLASIK COZUMU

0z
Bu ¢alismada, ikinci mertebeden bir Neumann probleminin yaklasik ¢6zliimii i¢in diferensiyel
doniisiim metodu kullanildi. Calisilan problem i¢in bu metodun etkinligini ve duyarliligin1 gdsteren
sayisal ornekler verildi ve mevcut sonuglar ile bir karsilastirma yapildi. Meveut metodun uygulanmasi
kolaydir ve ¢ok duyarli sonuglar verir.
Anahtar Kelimeler: Diferensiyel doniisiim metodu, Neumann problemi, Yaklasik ¢6ziim.

1. INTRODUCTION

In this study, we consider the second-order Neumann boundary value problem of the form

—=y"(x) = f(x,y(x)), xe[0.1], (1.1)
with the boundary conditions
y'(0)=a, y@)=45. (1.2)

In (Khan, 2005), the author studied the existence of a solution to Eq. (1.1), including the
approximation of solutions via the quasi-linearization method. An approach that is based on semi-
orthogonal B-spline wavelets is suggested in (Lakestani and Dehghan, 2006) for solving problem (1.1)
and (1.2). The aim of the current study is to approximate the solution of the above problem by means
of the differential transformation method.
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The differential transformation method is based on the Taylor’s series expansion, and provides an
effective numerical means of solving linear and non-linear initial value problems. The differential
transformation method may be employed to solve both ordinary and partial differential equations. For
example, In (Ertiirk and Momani, 2007), the authors successfully applied the one-dimensional
differential transformation method to the solution of a general fourth order boundary problem. The
authors of (Kurnaz et. al, 2005) presented the generalization of the differential transformation method
to n -dimensional case in order to solve partial differential equations.In (Jang et al, 2001), the authors
applied the two dimensional differential transformation method to solve partial differential equations,
too. Finally, the author of (Hassan, 2002) adopted the differential transformation method to solve
some eigenvalue problems.

In this paper, the differential transformation technique is applied to solve problem (1.1) and (1.2).
The method can be used to evaluate the approximating solution by the finite Taylor series and by an
iteration procedure described by the transformed equations obtained from the original equation using
the operations of differential transformation.

The sections of this paper are organized as follows. In the next section we describe the differential
transformation method. In Section 3, numerical examples have been presented to illustrate the
effectiveness of the present method and a comparison is made with the existing results. Section 4 ends
this paper with a brief conclusion. Note that we have computed the numerical results by Matematica
programming.

2. DIFFERENTIAL TRANSFORMATION METHOD

Let y(x) be an analytic function in a domain D and let x = Xx; represent any point in D. The

function y(x) is then represented by a power series whose center is located at x,.The Taylor series
expansion function of y(x) is expressed as:

y(x) = i (x _k)‘C")k [d;ygx)} for VxeD. (2.1)
k=0 : X

X=X;

The particular case of Eq. (2.1) when x, = 0 is referred to as the Maclaurin series of y(x) , and is

given by:
y(x)—ixk {d"y(x)} for VxeD (2.2)
= —_— —k . .
= k' dx -,

As shown by (Zhou, 1986), the differential transform of function y(x) is defined as:

k k
Y(k) = H—[M} . k=012,...,0 2.3)

x=0

k! dx*

where Y(k) represents the transformed function (commonly referred to as the 7-function) and y(x) is
the original function. The differential spectrum of Y(k) is confined within the interval x €[0,H],
where H is a constant.

The differential inverse transform of Y (k) is defined as follows:

)= Z(%J Y (k). (2.4)
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From the above, it is clear that the differential transformation technique is based upon the Taylor
series expansion. Note that the original functions are denoted by lowercase letters, while their
transformed functions (i.e. their 7-functions) are indicated by the corresponding uppercase letters.

The values of function Y(k) at specific values of the argument & are referred to as discretes, i.e.
Y(0) is known as the zero discrete, Y(1) as the first discrete etc. The greater the number of discretes
considered, the more precisely the unknown function can be restored. The function y(x) is expressed in

terms of the 7-function Y(k) , and its value is given by the sum of the 7-function using (x/ H )k as its
coefficient.

Table 1 presents some important properties of the differential transformation method derived
using the expressions presented in Egs. (2.3) and (2.4) above.

In real applications, it is found that the number of arguments required to restore the unknown
function precisely can be reduced by specifying an appropriate value of the constant A. In other words,
the function y(x) can be expressed in terms of a finite series and Eq. (2.3) can be written as

() = Z[%J Y (k). 25)

" k
Eq. (2.5) implies that the value of Zk=n+1 (x/ H ) Y (k) is negligible.

Table 1. Specific functions, y(x) , and their corresponding differential transforms, Y (k)

Original function Transformed function Y (k)
y(x) = g(x) £h(x) Y(k)=G(k)* H(k)
»(x) =0ag(x) Y (k) = a G(k)

_d"g(x) Y(k)=(k+1)(k+2)...(k + m)x
Y= G(k +m)
y(x) = g(x)h(x) Y(k) =Yy GOHK-])

=x" Y =5-my={" 7 K="
) =x TR, i kem

3. NUMERICAL EXAMPLES

To demonstrate the accuracy of the present method, we consider the examples given in (Lakestani
and Dehghan, 2006) in this section. Our method differs from the method presented in (Lakestani and
Dehghan, 2006) and thus these examples could be used as a basis for comparison. The results
obtained by the present method are found to be in good agreement with the results obtained in
(Lakestani and Dehghan, 2006).

Example 3.1 Consider the following linear Neumann problem (Lakestani and Dehghan, 2006)

—y"(x)=(2-4x")p(x), x€[0,1] (3.1
subject to the boundary conditions

Y'(0)=0, y'1)=-2/e (3.2)
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The exact solution of this problem is

2
X

y(x)y=e". (3.3)

Taking the differential transform of Eq.(3.1) with respect to time x gives:

_ 1 . oy _ (34
Y(k+2)= T (;[48(1 2) - 28(D)]Y (k z)j,

where Y(k) is the differential transformation of function y(x).

By using (2.3) and (2.2), the following transformed boundary conditions at x =0 can be
obtained:

Y(1) =0, ikY(k) = —%. (3.5)
k=0

Utilizing the recurrence relation in (3.4) and the first one of the transformed boundary conditions
in (3.5), the following solution up to O(x**) is obtained:

y(X) =a —ax2 +ﬁx4 _EXG +i)€8 _ a xlO n a xlz _ a xl4 N a x16
27 76" 247 T1200 T7207 T50400 40320 6
a 18 a 20 a

X

e x -7 + O(x™),
362880 3628800 39916800

where, according to Eq.( 2.3),
a=y(0)=Y(0) (3.7)

The constant a is evaluated from the second one of the transformed boundary conditions in Eq.
(3.5) as follows:

a=1. (3.8)

Substituting « into (3.6), we get the following series solution

y(x) =1-x> +0.5x* —0.166667x° +0.0416667x*

—0.00833333x"" +0.00138889x"> —0.000198413x"*

+0.0000248016x"° —2.75573x 10 x'®
+2.75573x107 x*° —2.50521x 10 x* + O(x**).

(3.9)

In Table 2, we report the absolute value of the errors of the differential transform method for
n = 22 together with the results given in (Lakestani and Dehghan, 2006) and the exact solutions.
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Table 2. Exact solution and absolute errors for y(x) for Example 3.1

by Exact solution Method of (Lakestani and Dehghan, 2006) Present method
0.0  1.00000000 1.3x107 6.0x107°
0.1  0.99004983 59%10° 0.0

0.2 0.96078944 56x10° 0.0

03  0.91393119 52x10°° 1.0x10~’
04  0.85214379 2.2x107° 1.0x107
0.5  0.77880078 4.4x107 5.0x107®
0.6  0.69767633 4.0x107 5.0x107®
0.7  0.61262639 1.8x10°° 0.0

0.8  0.52729242 1.1x10° 0.0

0.9  0.44485807 4.0x107° 1.0x1077
1.0 0.36787944 23%x10°° 0.0

Example 3.2 Consider the following nonlinear Neumann problem (Lakestani and Dehghan, 2006)
with the boundary conditions by Eqgs. (3.11) and (3.12):

- y”(x) = _2y3 (X), X € [051]7 (310)
y'(0)=-1, (3.11)
y')=-1/4. (3.12)

The exact solution of this problem is

1
y(x)=—". (3.13)
1+x

Taking the differential transform of both sides of Eq. (3.10), we obtain the following recurrence
relation:

: iiY(kl)Y(kz—kl)Y(k—kz)- (3.14)

Y(k+2)=————
(k+D(k+2) {6

The boundary conditions given in Egs.(3.11) and (3.12) can be transformed at x, =1 as
1 n
Y()= e ZkY (k)(=1)*" =-1. (3.15) Utilizing the recurrence relation in (3.14) and the
=1

first one of the transformed boundary conditions in (3.15), the following solution up to O(x*') is
obtained:
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p(x) :a+1_Tx+a3(x—1)2 —%az(x—lf +[%+§J(x—1)“ +(—L— 9“4](x—1)5

+ + +
21299200 1331200 83200 5200

640 40
3 7 2 6 5 9
S RO (A OV O (RS V'S V) UL A g I
160 10 640 40 10240 64 40
4 8 3 7 11
o1 294" 6la 1) 4 121a’ 2094’  6la ()"
122880 3840 480 153600 4800 600
11a? 594° 71a" I lla 4094>  7094° 71a" 12
+| - - - (x-1" + + + + (x=1)
204800 6400 800 4915200 307200 19200 1200
e 11 _ 2177a"  9653a" 1253a" (=)t
255590400 15974400 998400 20800
3 7 11 15
[ 2lla 23574’ 2453a"  179a ](x—l)”

2085617664000 32587776000 452608000 127296000 31824000

L[ 21la®  19031a® 458394 12497a" (1)
425984000 79872000 4992000 312000
21la 5127a>  499a°  562494" 12497a" 16
+ + + + + (x=1)
13631488000 212992000 245760 2496000 624000
e 211 _26479a'  6095734° 3538347 37081la' ()"
926941184000 14483456000 1810432000 4352000 14144000
21373114’ 14044994’  951957a"' 21215594 370811a" 8
+ + + + + (x-1)

N 11249a* ~ 187481a° _2244767a‘° _11595416114_719129a18 o)
2780823552000 43450368000 5431296000 16972800 42432000
112494 783671a’ 138485694°  274574094"
+ + + +

111232942080000 2317352960000 217251840000 13578240000

s 6795551a"’ . 7191294%
565760000 106080000

j(x - l)20 + O(x21 ),

(3.16)
where
a=y(0)=Y(0) (3.17)

The constant a is evaluated from the second one of the transformed boundary conditions in Eq. (3.15)
as follows:

a = 0.5000023. (3.18)

Substituting a into (3.16), we have series solution as follows:
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y(x) = 0.500002 + I_Tx +0.125002(x —1)* —0.0625006(x —1)°

+0.0312504(x —1)* —0.0156253(x —1)° +0.00781265(x —1)°

—0.00390633(x —1)7 +0.00195317(x —1)* —0.000976589(x —1)°

+0.000488296(x —1)'* —0.000244149(x —1)"" +0.000122075(x —1)"? (3.19)
—0.0000610375(x —1)"* +0.0000305188(x —1)"* —0.0000152595(x — 1)
+7.62975x107°(x —1)'"* —3.81488x10°°(x —1)"7 +1.90745x10°(x —1)"®

~9.53726x1077 (x —1)"" +4.76864 x1077 (x —=1)** —O(x”").

In Table 3, we report the absolute value of the errors of the differential transform method for n = 20
together with the results given in (Lakestani and Dehghan, 2006) and the exact solutions.

Table 3. Exact solution and absolute errors for y(x) for Example 3.2

X Exact solution Method of (Lakestani and Dehghan, 2006) Present method
0.0 1.00000000 5.6x107° 5.1x107°
0.1 0.99004983 2.6x107° 4.0x107°
0.2 0.96078944 1.7x107° 4.0x107°
0.3 0.91393119 1.6x107° 3.0x107°
0.4 0.85214379 1.4%x107° 3.0x107°
0.5 0.77880078 1.2x107° 2.0x107°
0.6 0.69767633 1.0x107° 3.0x10°
0.7 0.61262639 7.2%x107° 2.4x107°
0.8 0.52729242 53%x10°° 2.3x107°
0.9 0.44485807 5.5x107° 2.3x107°
1.0 0.36787944 1.6x107° 2.3x107°

Example 3.3. Consider the following linear Neumann problem(Lakestani and Dehghan, 2006)
-y"(x)=4y(x)-2, x€[0.1], (3.20)
subject to the boundary conditions

y'(0)=0, (3.21)
y'(1) =sin(2) (3.22)
The exact solution of this problem is

y(x) = sin*(x). (3.23)
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Using the transformational operations in Table 1 and by taking differential transform for the both sides
of (3.20), we have

28(k)—4Y (k)

Y(k+2)= GiD(k+2) (3.24)
By using (2.3), the boundary condition (3.21) becomes

Y(1)=0. (3.25)
By using (2.2), the boundary condition (3.22)

becomes

Zn:kY(k) = sin(2). (3.20)
k=0

Utulizing the recurrence relation in (3.24) and the transformed boundary condition given in Eq.
(3.15), the following series solution up to 16-term is obtained:

2a -1 2—4a 2a -1
X)=a+(1-2a)x* + xt+ x6+( jxg
yx)=a+1-24) ( 3 j [ 45 ] 315

L[2m4a) o [ 4a=2 ) 0 [ 4-8a ) (3.27)
14175 467775 42567525

+ —20_1 x' +0(x18),
638512875

where, according to Eq.( 2.3),

a=y(0)=Y(0) (3.28)
The constant a is evaluated from the transformed boundary condition given in (3.26) as follows:

a=-2.00283x10". (3.29)

Substituting a into (3.27), we get the following solution:

y(x) ==2.00283x107"" + x* —0.333333x" + 0.0444444x° —0.0031746x*
+0.00014109x"°—4.2755%x107°x"* +9.39683 x 10 x'* (3.30)
—1.56614x107° x'° + O(x").

In Table 4, we compare the absolute values of the errors of the differential transform method for
n =16 together with the results given in
(Lakestani and Dehghan, 2006) and the exact solutions.
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Table 4. Exact solution and absolute errors for y(x) for Example 3.3

X Exact solution Method of (Lakestani and Dehghan, 2006) Present method
0.0 0.000000000 1.2%10°% 0.0
0.2 0.039469503 56x107° 0.0
0.4 0.151646645 3.1x107° 0.0
0.6 0.318821123 92%x1077 0.0
0.8 0.514599761 4.5%1077 0.0
1.0 0.708073418 1.8x10°% 0.0

Example 3.4 Consider the linear Neumann problem (Lakestani and Dehghan, 2006)

- y”(x) = _y(x)a X € [Oal]a (331)
subject to the boundary conditions

»'(0)=0, (3.32)
»'(1) = sinh(1). (3.33)

The exact solution of this problem is
y(x) = cosh(x). (3.34)

The differential transform of Eq. (3.31) yields to

Y(k+2):L. (3.39)
(k+1D)(k+2)
The boundary conditions are transformed to be:
Y1) =0, (3.36)
D" kY (k) = sinh(1). (3.37)
k=0

Using Egs. (3.35) and (3.36), Y (k) is obtained up to # =12 and then using the inverse transformation
rule in Eq. (2.4), the following series solution is obtained:

I, 1, 1 & 1 8 1 10
y(x)=a+—ax" +—ax" + ax’ + ax’ + ———ax
2 24 720 40320 3628800 (3.38)
+—1 ax” +0(x"),
479001600

where, according to Eq.( 2.3),
a=y(0)=Y(0) (3.39)
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The constant a is evaluated from the transformed boundary condition given in (3.37) as follows:
a=1. (3.40)

Substituting a into (3.38), we get the following solution:

y(x) =1+0.5x" +0.0416667x" +0.00138889x° +0.0000248016x*

(3.41)
+2.75573x107" x'°+2.08768 x 107" x> + O(x'*).

Numerical results for n =12 with comparison to (Lakestani and Dehghan, 2006) and the exact
solution (3.34) are given in Table 5.

Table 5. Exact solution and absolute errors for y(x) for Example 3.4

X Exact solution Method of (Lakestani and Dehghan, 2006) Present method
0.0 1.0000000000 23x%x107° 1.0x107'°

0.2 1.0200667556 3.4x%x10° 0.0

0.4 1.0810723718 3.8x107° 0.0

0.6 1.1854652182 42%x107° 0.0

0.8 1.3374349463 4.4%10°¢ 0.0

1.0 1.5430806348 4.6%x107° 20x%x107"

CONCULUSION

The differential transform method is used to solve a second-order Neumann problem. The present
method is computationally attractive and applications are demonstrated through illustrative examples.
The results obtained show that this method can solve the problem effectively.
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