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Abstract: Degradation of the lands by salinity under arid climate and poor drainage conditions can be inevitable. In the 

Harran plain total salt affected areas covers 10 % of total irrigated areas which are mainly located in the low lying parts of the 

plain where elevation ranges from 350 to 400 m. Soil salinity shows high spatial variability which requires intensive 

sampling and laboratory analyses. Geostatistical techniques such as simple or ordinary kriging can be used in explaining this 

spatial variability and estimating soil salinity parameters at unvisited locations. On the other hand, new approaches such as 

hybrid interpolation methods which incorporate secondary variables into primary variables can help improve the estimation. 

Estimating soil salinity is a vital issue in soil fertility and management. This study evaluated multivariate geostatistical 

methods such as regression kriging (RK) and kriging with external drift (KED) and compared them with ordinary kriging 

(OK) for the estimation of soil salinity parameters. Topographical parameters (i.e elevation, slope and topo wetness index (ln 

(A/tanα))) as well as soil EC values at different depths were used as auxiliary variables. Overall results showed that 
estimation and mapping accuracy may be improved using multivariate geostatistical methods depending upon the power of 

the relationship between soil salinity parameters and environmental variables used as covariable. 
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1. I�TRODUCTIO� 

Soil salinity is a serious environmental problem 

affecting 20 % of total irrigated lands across the globe. 

Overall total cultivated areas degraded by salinity and 

sodicity have been reported to be 1.5 billion ha over 

100 countries (Tanji, 2002). Salt affected areas mostly 

dominate in arid and semi arid regions, some of which 

are located in the Harran plain. According to recent 

survey performed, around  10 % of the plain have 

been degraded by salinity slight to extreme levels 

(Cullu ve ark. 2002). 

In addition to traditional methods based on the 

measurement of soil salinty parameters from the 

extractions obtained either from soil saturation paste 

or different soil and water ratios (Rhoades, 1982), the 

soil salinity has been monitored using various 

techniques by earlier researchers. Soil salinity was 

mapped by taking advantage of spatial interpolation 

methods (Ardahanlioglu et al. 2000), remote sensing-

satelliete imagery- digital image analysis, 

hyperspectral reflectance spectroscopy and 

Electromagnetic Induction tools (EM)  (Farifteh et al. 

2006). 

Pozdnyakova and Zhang (1999) estimated soil 

salinity parameters using both ordinary kriging and 

co-kriging. In addition to co-kriging, hybrid 

interpolation methods such as regression kriging (RK) 

and kriging with external drift (KED) use a secondary 

variable in order to improve the estimations of target 

variable. They have been successfully used to improve 

the estimations of various parameters such as soil 

horizon thickness, soil heavy metals and yield (Lin, 

2002; Kravchenko and Robertson, 2007). These 

methods combine the information from both primary 

variables (target) and more densely available and 

cheap to obtain auxilary variables and they can be 

used as long as there exist a linear relationship 

between both variables and also auxilary variable is 

available at both target’s locations and also at 

locations where the estimations are to be done (Hengl 

et al. 2004).  

In this study, soil salinity parameters were mapped 

using multivariate geostatistical methods  such as RK 

and KED and the results were compared with 

traditional OK to see whether the estimation quality of 

soil salinty at unvisited locations could be improved 

by the use  of secondary variables. 

 

2. MATERIAL A�D METHODS 
2.1. Study Site 

The study area is located in the Harran Plain, 

Sanliurfa, Turkey, covering a total area of around 

1000 ha. The study area is under semi arid climate 

with a mean annual temperature, precipitation and 

evaporation of 17 
o
C, 365 mm and 1850 mm, 

respectively. The soils were mostly formed on 

calcareous parent material, and are rich in iron. Soils 

are mostly finely textured, low in organic matter, but 

high in CaCO3 content  on average (Aydemir, 2001). 

2.2. Soil Sampling and Laboratory Analysis 
A total of 151 locations randomly selected were 

sampled at two different depths (0 to 15 and 15 to 30 

cm). Sampling locations, X and Y coordinates  were 

recorded using a GPS unit.  Soil samples were 

subsequently air dried and sieved (2 mm) to prepare 

for laboratory analysis. Soil electrical conductivity as 

an indicator of current soil salinity at both surface and 

subsurface depths were determined from soil water 

extracts obtained from saturation pastes prepared 

using 100 g air dried samples.   

2.3. Topographical Indicators 
Topographical maps (1:5000 scale) of the study 

area was digitized to delineate Digital Elevation Map 

(DEM) (Figure 1). From DEM topographical 

parameters such as slope (%), flow accumulation and 

Topo Wetness Index (TPI) were calculated  using 
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spatial analysis tools in ArcGIS 9.3 (ESRI Inc.). 

Digitization was performed using NETCAD (National 

CAD and GIS Solutions) and DEM creation and 

analyses of DEM parameters was performed within 

ArcGIS environment. The information of 

topographical indicators were extracted by 

overlapping  the sampling locations on the raster maps 

of each topographical parameters. Calculation of the 

Topo Wetness Index (TWI) was performed according 

to the formula below (Sorensen et al. 2005) 

 

 

 

where a is the upslope contributing area calculated 

from flow accumulation  and  β  is percent slope. 

 

 
Figure 1. DEM of the study area and 100 m by 100 m 

grid estimation locations 

 

2.4. Geostatistical Modeling 
2.4.1. Ordinary Kriging (OK) 

Ordinary kriging estimates the unknown value 

using a weighted linear  combinations of the available 

samples.  
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OK estimation at an unsampled location (xo), n is the 

number of samples in a search neighborhood, wi are 

the weights assigned to the i
th
 observation Z(xi). 

Weights are determined after computing a 

semivariogram that models spatial correlation and 

covariance structure between data points for each 

variable according to following equation 

(Wackernagel, 2003): 
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γ is the semivariance between two 

observation points, Z(xi) and Z(xi+h), separated by a 

distance h, and n is number of pairs at the distance h. 

2.4.2. Regression Kriging (RK) 
RK as a multivariate geostatistical method is the 

sum of regression between target (primary) variable 

and secondary variable(s) and kriging of residuals 

derived from the regression (Wackernagel, 2003); 
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where )( oRK xZ  is the RK estimate at unsampled 

locations (xo), ßk and e(xi) are the regression 

coefficients and residuals, respectively, obtained from 

the regression between primary and secondary 

variables using actual lab observations at calibration 

locations (xi), p is the number of predictor (secondary) 

variables , wi are kriging weights determined from the 

variogram of residuals, qk(xo) are the values of 

secondary variables at the target locations, which are 

topographycal parameters in this case. Regression 

coefficients and residuals were obtained using 

Ordinary Least Square (OLS) regression and kriging 

of residuals was performed with simple kriging. The 

secondary variables involved in the OLS equation 

were selected through stepwise regression analysis.  

2.4.3. Kriging with External Drift (KED) 
KED is another spatial interpolation method that 

combines primary and secondary variable with the aim 

of improving the estimations. KED is similar to 

Universal Kriging where coordinates are used as trend 

(drift) in the kriging. Whereas in KED, trend is 

auxilary variable which is correlated with primary 

variable and exist extensively both in calibration and 

also validation points. KED is formulized as  

(Wackernagel, 2003). 

∑
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here wi= weights of KED, m(x) is  main trend part 

where predictor variables are involved and  Ɛ(x) is 

residuals. Predictor (secondary) variables are available 

at all points (calibration and validation points).  

2.4.4. Validation 
All three methods were compared for their quality 

of the estimation using a seperate validation data set 

selected randomly from whole data set. Accuracy of 

predictions were compared using root mean suqare 

error of prediction (RMSEP) value.  

In order to map soil surface and subsurface ECe 

using geostatistical methods, a 100 by 100 grid was 

formed and overlapped on raster DEM (Figure 1) 

belonging to the study area and topographycal values 

at each node was extracted and used as covariable. 

 

3. RESULTS A�D DISCUSSIO� 
3.1. Salinity Parameters 

Descriptive statistics related with soil salinity 

parameters; surface and subsurface ECe and their 

correlations with each other and topographical indices 

are shown in Tables 1 and 2, respectively. Soil ECes 

showed a broad range from 0.5 to 10.2 dS/m for ECe-I 

and 0.68 to 13.8 for ECe-II. Elevation of the study 

area ranges 360 m to 370 m.  

Soil ECes were highly correlated with each other 

(r =0.77) and pH (r = -0.39 and r=-0.62) (Table 2). 

Other significant correlations (p< 0.05) existed 

)tan/(ln βaTWI =
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between ECe-I and elevation, flow accumulation and 

topo wetness index (r = - 0.30, 0.23 and 0.20, 

respectively), between ECe-II and elevation, flow 

accumulation, flow direction, topo wetness index and 

soil type (r=-0.33, 0.31, -0.23, 0.23 and 0.21, 

respectively) while the correlations with slope, curve 

and aspect were not significant. The areas with high 

TWI values at low elevations are supposedly become 

saturated first with capillary movement of 

groundwater, however either ECe was poorly 

correlated with TWI. 

3.2. Prediction of Soil Salinity using OK, RK and 
KED 

Soil surface and subsurface Ece at unsampled 

locations (validation points) were estimated and 

mapped across the study area using traditional OK, 

and two hybrid interpolation methods; RK and KED 

and the results were compared for all three. Figure 2 

summarizes the estimation procedure of RK that 

combines the both regression and kriging of residuals 

from regression equation.  

In KED, primary variable of interest was kriged 

against covariable which was elevation in this case. 

Figure 4 shows the quality of the estimations by 

different geostatistical methods. RK or KED using 

topographycal parameters as covariable improved the 

estimations of ECe-I and ECe-II slightly as compare 

to OK (Figure 4a).  

 

 
Table 1. Descriptive Statistics of soil and environmental parameters 

  N Min Max Mean Stdev 

ECe-I 151 0.55 10.2 3.28 221.5 

ECe-II 91 0.68 13.8 37.5 278.3 

pH-I 68 7 8.7 7.7 0.36 

Elv 151 360 370 363 2 

TWI 151 6.47 21.9 9.95 2.43 
TWI: Topo Wetness Index, Elv: Elevation, pH-I: pH at surface 

 

 
Table. 2. Correlations among soil ECs and topographycal  indices 

  ECa-II pH-I Stype Facc. Slope Curv Fd Asp Twi   Elv 

ECe-I 0.77** -0.39** 0.13 0.23** -0.12 -0.19 -0.2 -0.02 0.20* 

  -

0.30** 

ECe-II   -0.62** 0.21* 0.31** -0.13 -0.14 -0.23*   0.06 0.23* 

-

0.33** 
Stype:Soil Type; Facc: Flow Accumulation, Fd: Flow Direction, Asp:Aspect, TWI: TopoWetness Index, Elv:Elevation 

**: Correlations significant at p < 0.01 and *: at p < 0.05 levels. 

 

  
 

a) b) c) 

   
d) e) f) 
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Figure 2. Steps in regression kriging; a) stepwise regression between target and covariable b) residuals from regression c) 

variogram of residuals d) kriging  of residuals  across whole study area e) OLS regression across whole study area 

f) final map (d+ e) as in regression kriging equation 

 
 
Figure 3. Variogram obtained by soil surface EC and Elevation in KED. (Nugget to sill ratio: 54 %, model: Spherical, range: 

349) 

 

This may be attributable to weak correlations obtained 

between topographycal variables and soil ECe values 

at surface and subsurface. Rather than topographycal 

variables, using subsurface soil ECe values as 

covariable better improved the estimations of soil 

surface ECe providing lower RMSEP values using 

either RK or KED than traditional OK (Figure 4 b). 

But this was not the case for the estimations of 

subsurface soil ECe which was not  improved much 

using either RK or KED with soil surface ECe as 

covariable. This is either because of poor correlations 

between primary and secondary variable or this may 

be attributable to poor spatial distribution of residuals 

from regression between two, which would be equal 

to regression itself (Hengl et al. 2004). The latter can 

be the reason for this result obtained considering 

strong correlation available between both (ECe-I and 

ECe-II). 

3.3. Mapping of Soil Salinity 
Figure 5 and 6 show the maps of soil salinity at 

surface and subsurface depths in the study area 

delineated using different spatial interpolation 

methods. All three methods had some levels of errors 

associated with estimations. But in general, maps 

obtained by OK showed underestimations at some 

locations (Figure 5 and 6), which can be due to nature 

of this technique (Wackernagel, 2003). There was a 

similarity between final maps produced with RK and 

KED and raster DEM map, which can be clearly seen 

from the figures. Soil subsurface map had better 

resolution and accuracy as compare to the surface 

map. This can be due to the degree of correlation 

between elevation and soil ECe-I and ECe-II which is 

relatively higher. Overall, these results confirmed the 

fact that the accuracy of predictions and mapping of 

soil variables using multivarite geostatistical methods 

that combine primary and secondary variables is 

mostly dependent upon the power of the relationship 

between two.  

 
4. CO�CLUSIO� 

The estimation quality of soil salinity parameters 

using traditional ordinary kriging was poor due to 

poor spatial distribution of soil salinity parameters 

across the study area. The estimations were improved 

slightly using multivariate geostatistical methods 

along with topographycal parameters. Better 

improvements were obtained when using soil ECs at 

different depth as covariable.  

 

 a)  b) 
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Figure 4.  Change in values of Root Mean Square Error of Prediction (RMSEP)  among different estimation methods ; OK: 

Ordinary Kriging, RK: Regression Kriging and KED: Kriging with External Drift for ECa-I and ECa-II. a) Using 

topographycal parameters and b) Soil ECas as covariable 

 
 

 
Figure 5. Soil surface salinity (ECe) estimation maps using OK, RK and KED (from top to bottom) 

 
 
 

  

 
Figure 6. Soil subsurface salinity (ECe) estimation maps using OK, RK and KED (from top to bottom) 
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