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Abstract: In this study, using readily available experimental data in the literature, 
artificial neural networks (ANN) method is adopted to specify condensation 
Nusselt number in horizontal smooth tubes. Condensation heat transfer of R22, 
R134a and 50/50 and 60/40 of the R32/ R125 azeotropic refrigerant mixtures 
were examined with four different ANN methods. The experimental data is taken 
from the study of Dobson et al. [1]. The input parameters are mass flux, quality, 
hydraulic diameter, Soliman's modified Froude number, density of fluid phase and 
dynamic viscosity of liquid phase where the output parameter is the condensation 
Nusselt number. In this study the interval for tube diameters is between 3.14-7.04 
mm, and the interval for mass flux is between 50-800 kg/m2s.  The training 
algorithms are tested using different neuron numbers and the best algorithm was 
found as Bayesian regularization having 8 neurons. It is observed that the Nu 
number evaluated using ANN is ± 15% error margin compared to experimental 
results. Furthermore, for increasing mass flux rates the error margin is around ± 
5%. 

  

  

Yatay Pürüzsüz Borularda Yoğuşmadaki Nusselt Sayısının Belirlenmesi için Yapay Sinir 
Ağ Teknikleri 

 

 

Anahtar Kelimeler 
Yoğuşma, 
Yapay sinir ağları, 
Soğutucu akışkan, 
Nusselt sayısı, 
Yatay pürüzsüz boru  

Özet: Bu çalışmada, literatürdeki hazır deneysel veriler kullanılarak, yatay 
pürüzsüz borularda yoğuşmadaki Nusselt sayısını belirlemek için yapay sinir ağları 
(ANN) yöntemi kullanılmıştır. R32, R134a ve %50/%50 ve %60/%40 R32/R125 
azeotropik soğutucu karışımlarının yoğuşma ısı transferi dört farklı ANN yöntemi 
ile incelendi; Levenberg-Marquardt, Bayes düzenlenmesi, ölçeklenmiş eşlenik 
değişim ve esnek geri yayılımı. Deneysel veriler Dobson ve ark.[1]’nın 
çalışmalarından alınmıştır. Giriş parametreleri kütle akısı, kalite, hidrolik çap, 
Soliman'ın değiştirilmiş Froude sayısı, akışkan faz yoğunluğu ve çıkış 
parametresinin yoğuşmadaki Nusselt sayısının olduğu sıvı fazın dinamik 
viskozitesidir. Bu çalışmada, boru çapları aralığı 3,14-7,04 mm arasında ve kütle 
akı aralığı 50-800 kg/m2 arasındadır. Eğitim algoritmaları farklı nöron sayıları 
kullanılarak test edildi ve en iyi algoritma 8 nörona sahip Bayes düzenlenmesi 
olarak bulundu. ANN kullanılarak değerlendirilen Nu sayısının deney sonuçlarına 
göre ±%15 hata payı olduğu gözlenmiştir. Ayrıca, artan kütle akı oranları için hata 
payı ±%5 civarındadır. 

  

 
1. Introduction 
 

Condensation is observed in systems like power 
plant, chemical, heating and cooling applications. The 
condensation energy is considerably high compared 
to the energy transfer during a single-phase process. 
Using the lethal energy of condensation, it is possible 
to design smaller heat exchangers.  

The condensation can take place in a number of ways 
depending on the application. In cooling systems and 
power plants condensation occurs in horizontal 
tubes. During a condensation process, different flow 
regimes are observed such as ring, annular, bullets 
etc. Each flow regime has its own heat transfer 
behavior thus condensation turns into a complex 
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process. As a result of these the complexities it is 
difficult to predict accurately the Heat Transfer 
Coefficient (HTC) and pressure losses for the 
condensation in smooth tubes [2]. 
 
In the literature there are significant amount of study 
present that focused on condensation in horizontal 
tubes. Based on the experimental observations the 
correlations are introduced by Boyko and Kruzhilin 
[3], Shah [4], Dobson and Chato [5], Kim and Ghajar 
[6], Jung et al. [7], Thome et al. [8], Cavallini et al. [9] 
and Huang et al. [10]. These correlations are well 
accepted in the heat transfer society. 
 
Condensation introduces constantly changing 
parameters to the process which makes it impossible 
to postulate a mathematical model. For systems 
where the output estimation depends on complex 
processes and many parameters, artificial neural 
network (ANN) applications have been frequently 
used. ANN is a powerful tool in making realistic 
estimates for the outputs of nonlinear, complex 
problems without explaining the physical 
mechanism. 
 

There are plenty of studies in the literature on HTC of 
two-phase flows using ANN.  While M.H. Hosoz et al. 
[11] have examined the cooling performances of the 
cascade cooling systems with ANN; similarly E. 
Arcaklıoğlu et al. [12] investigated the performance 
of different refrigerant mixtures in heat pump 
applications. Y. İslamoğlu [13] analyzed the thermal 
performances of the wire condensers using ANN 
methods. Sencan et al. [14] have used ANN to 
determine the thermophysical properties of different 
fluid mixtures. 
 
Demir et al. [15] investigated the condensation HTCs 
of the R600a fluids in the horizontal tubes. It is 
shown that the results are 20% accurate with 
experiments using the correlations in the literature 
however with ANN the results are 5% accurate with 
the experimental observations. 
  
Balcılar et al. [16] estimated the HTC and pressure 
drop of the R134a flow in a vertical tube MLP, RBFN, 
GRNN and ANFIS. It was determined that the best 
results are in the range of 5% error with MLP and 
RBFN. S. Azizi and E. Ahmadloo [2] investigated 
coagulation HTC with the ANN and compared their 
results with the experimental data for the R134a 
inclined tubes in the literature. Estimates were made 
with an error margin of 2-5%. 
 
In this study, the results of experimental work by 
Dobson et al. [1] are used. Dobson et al. studied 
condensation in smooth tubes ranging from 3.14 mm 
to 7.04 mm in diameter for R22, R134a and 50% / 
50% and 60% / 40% of the R32/ R125 azeotropic 
mixture refrigerants. In the study of Dobson the heat 
transfer characteristics and flow regime behaviors of 
the related fluids are tabulated and different flow 

regimes are considered. It is shown that heat transfer 
behavior varies considerably depending on the flow 
regime. With large number of input parameters, the 
error range of the correlations at the estimated point 
of the result increases significantly. In this study, the 
Nu number for condensation in the smooth tubes is 
estimated using four different ANN methods. 
Therefore, the main aim of the study is to establish an 
artificial network to predict the Nu number 
accurately for different refrigerants under different 
flow conditions such as mass flux, quality, tube 
diameter, Soliman's modified Froude number and 
density and dynamic viscosity of liquid phase.” 
 

2.  Material and Method 
 

2.1. Numerical Model 
 

Artificial neural networks are reliable and precise 
predictor models for various engineering 
applications. The aim of ANN is to ensure solution 
algorithm for complex problems like pattern 
association, projecting the future values, 
classification, clustering, data compression, control 
applications, function approximation or optimization. 
  
ANN is used in prediction of HTC and pressure drop 
in heat transfer problems [14, 15, 16, 17]. Although 
there have been a huge number of studies in the 
literature for fluids and heat transfer problems using 
ANN, there is still a necessity for better networks that 
have more robust and general prediction ability. To 
achieve that, various network properties should be 
adjusted to find the network with the most successful 
and the best generalized version. The neural 
networks that fail to form a proper network would 
result in poor generalization or over fitting. The 
method of artificial neural networks is very attractive 
to handle problems with multiple-input however 
without optimizing the structure of the procedure the 
result may lose its prediction ability for intermediate 
values and lose its overall prediction ability. 
Therefore, performance of neural network during 
training phase should be carefully monitored. 
 

In this study, a neural network with acceptable 
prediction capability for condensation Nu number is 
developed. Output of the neural network is Nu 
number while inputs are fluid density (ρL), fluid 
dynamic viscosity (μL), hydraulic diameter (D), mass 
flux (G), quality (x) and Soliman's modified Froude 
number (FrSO). Schematic diagram of a neural 
network with n neurons in hidden layer with 
described inputs is shown in Figure 1.  
 

Only one hidden layer is considered for this study 
since more hidden layers would complicate the 
solution without additional improvement. 70% of the 
experimental data is used for training set while test 
and validation sets percentages were both 15%. It 
should also be noted that the division of the 
experimental data between sets is made in a random 
manner. 
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Figure 1. Schematic representation of the proposed neural 
network structure with n neurons in hidden layer 

 
Inputs and outputs are processed with normalization 
functions to improve the success of the network. All 
parameters are normalized between -1 and 1 and 
then forwarded to the network for training phase. 
Weights and biases of the networks are initialized by 
Nguyen-Widrow procedure in order to reduce the 
computation time. Transfer function for input and 
output layers are selected as tangent-sigmoid and 
pure-linear respectively. Input layer transfer function 
is decided by trying both log-sigmoid and tangent-
sigmoid function, latter is selected after overall 
performance observations. Four different training 
functions with different number of neurons for 
hidden layer is applied and the related worst, best 
and 15 neuron results are shown in Table 1. The 
hidden layer neuron number is varied 1 to 15. In 
order to prevent over fitting, necessary settings are 
employed and performance of the network is 
monitored during training phase. Performance 
criteria for the tested networks are mean square 
error (MSE) and coefficient of determination (R2) 
which are defined as 
 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑓𝑖 − 𝑦𝑖)

2

𝑖
 (1) 

 

Table 1. Selected results for the trained neural network 
structures 

Training 
algorithm 

Neuron 
number 

MSE R2 

Levenberg-
Marquardt 

1 0.01619 0.84025 
10 0.00112 0.98860 
15 0.00134 0.98640 

Bayesian 
regularization 

1 0.01619 0.84133 
8 0.00091 0.99077 

15 0.00104 0.98940 

Scaled conjugate 
gradient 

1 0.01648 0.83739 
12 0.00277 0.97189 
15 0.00876 0.91279 

Resilient 
backpropagation 

1 0.01998 0.80118 
11 0.00331 0.96654 
15 0.00624 0.93775 

 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

 (2) 

 

SSres and SStot are defined as residual sum of squares 
and total sum of squares and can be defined as 

𝑆𝑆𝑟𝑒𝑠 =∑ (𝑦𝑖 − 𝑓𝑖)
2

𝑖
 (3) 

 

𝑆𝑆𝑡𝑜𝑡 =∑ (𝑦𝑖 − �̅�)2
𝑖

 (4) 
 

where fi, yi, n and y̅ are defined as predicted value, 
experimental value, pattern number and the mean 
value of experimental values respectively. 
 

The ANN study is investigated by considering four 
different artificial neural network structures, as 
shown in Table 1. It is determined that Bayesian 
regularization structure gave the most consistent 
results amongst four network structures, and ANN 
calculations presented in this study are evaluated 
using this structure. In the Bayesian regularization 
method, calculation is made based on the number of 
1, 8 and 15 neurons, and the most compatible results 
are determined to be related to the number of 8 
neurons. Thus, the best-performed network is 
observed to be the Bayesian Regularization method 
with 8 neurons. 
 

A correlation analysis is performed to determine the 
most influential input parameters. The best 
performed network structure is selected for base 
network for the analysis. All inputs and their different 
combinations are formed and fed into the neural 
network and their respective performance results are 
obtained. Due to large amount of combinations only 
the results that show significant improvement in the 
estimation of condensation Nu number are tabulated 
in Table 2. The measure of success is chosen as MSE 
value. As shown in Table 2 the FrSO number had the 
major improvement in reduction of MSE. The 
combination of ρL and D with FrSO showed further 
reduction in MSE. The use of more parameters 
reduced the error even further, as expected. 
Therefore, it can be concluded that the FrSO has the 
major contribution to the results compared to the 
other parameters used in this network. 
 

Table 2. Results of dependency analysis 
Input parameters 

MSE 
ρL µL D G X FrSO 

X 
     

0.1321 

 
X 

    
0.3968 

  
X 

   
0.4054 

   
X 

  
0.3224 

    
X 

 
0.3883 

     
X 0.0695 

X 
    

X 0.0621 

 
X 

   
X 0.0593 

X 
 

X 
  

X 0.0098 

  
X 

 
X X 0.0063 

X 
 

X 
 

X X 0.0042 

X X X X X 
 

0.0013 
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3. Results and Discussion  
 
Condensation Nu number is compared with the 
experimental results from the study of Dobson et al. 
[1] and the estimated results obtained using the 
artificial neural network models. Four different 
training algorithms were used, Bayesian 
regularization, Levenberg-Marquardt, resilient back 
propagation and scaled conjugant gradient with three 
different neuron numbers. The MSE analysis showed 
that the best estimation training algorithm is the 
Bayesian regularization method with 8 neurons, 
which is consistent with the results in the literature 
[15,16]. The order of the training algorithms and the 
neuron numbers (NN) according to the best 
performance can be given with this sequence: 
Bayesian regularization (MSE=0.00091, NN=8), 
Levenberg-Marquardt (MSE=0.00112, NN=10), scaled 
conjugate gradient (MSE= 0.00277, NN=12) and 
resilient back propagation (MSE=0.00331, NN=11). 

  
The effect of quality during the condensation on the 
error margins of the estimated condensation Nu 
number for the refrigerants, R22, R134a refrigerant, 
%50R32/ %50R125, 60%R32/ 40%R125 azeotropic 
mixtures, are summarized in Figure 2. It is observed 
that the error margin changes mainly in the range of 
5% and 15% with the quality during the 
condensation.  However, it is observed that the most 
deviation between experimental results and ANN 
model occurred during when quality values between 
0 and 0.3. It is determined that even at this region the 
error range do not exceed 20%.  

x [-]
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E
rr

o
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-40
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R134a
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60% R32-40% R125

+15%

-15%

Figure 2. Error margin in the most predictive artificial 
neural network method (trained by Bayesian regularization 
technique with 8 neurons) due to change of quality of 
refrigerant during condensation 
 
The Figure 3 demonstrates comparisons of 
experimental Nu number and the Nu number

obtained by ANN for different refrigerants considered 
in this study. It is noticed that low Nu number values 
(Nu~200) R22, R134a and 50% R32 / 50% R125 
refrigerants showed significant error (around 30%), 
however for higher Nu numbers the error dropped as 
low as 2%.  Although similar trend is observed for the 
refrigerant azeotropic mixture 60% R32 / 40% R125, 
for low Nu numbers the error is observed to be better 
than other refrigerants.  
 
The error is around 15% for Nu number as small as 
100. The experimental results and ANN predictions 
for Nu number for different refrigerants are 
summarized in Table 3. It is observed that refrigerant 
R22 showed the lowest deviation where 60% R32/ 
40% R125 showed the highest deviation. 
Additionally, 99% of the refrigerant R22 resulted 
within   ±10 (%) error and 83.42% of the refrigerant 
R134a resulted within the same error margin. It can 
be concluded that the proposed ANN method 
introduces considerable accuracy in estimation of 
condensation Nu number. Particularly because of the 
increase in mass flux, the results obtained are very 
reasonable under ± 5% error. 
 
The transferred heat in two-phase flows depends on 
the general flow regime. Flow and heat transfer 
characteristics in shear-dominant flow regimes are 
mainly depend on mass flux and quality of the 
mixture [4]. The effects of different quality values and 
different mass fluxes on Nu number is showed in 
Figure 4. It is observed that for increased quality 
levels the low mass fluxes do not significantly affect 
the condensation Nu number, but it is understood 
that increasing mass fluxes have significantly 
increased Nu number with increased quality. It is 
shown that for all refrigerants (Figure 4 a-d) the 
estimated Nu number is in good agreement with the 
experimental results within the error range of 10%, 
in average.  

 
Table 3. The comparison of experimental and ANN results 
for condensation Nu number estimates for different 
refrigerants: the compliance rates   

Refrigerant 
 

Mean 
Deviation 

(%) 
% of Points 

within ±10 (%) 
% of Points 

within ±25 (%) 

R134a 6,12 83,42 100,00 
 
R22 4,17 99,00 100,00 
 
60% R32/ 
40% R125 6,81 85,42 97,92 
 
50% R32/ 
50% R125 4,20 92,38 99,05 
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Figure 3. Comparisons of experimental Nu number with 
the most predictive artificial neural network method 
(trained by Bayesian regularization technique with 8 
neurons) (a) for R22 refrigerant, (b) for R134a refrigerant, 
(c) for %50 R32/ %50 R125 azeotropic mixtures, (d) for 
60% R32/ 40%R125 azeotropic mixture 
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Figure 4. Comparisons of experimental Nu number with 
the most predictive artificial neural network method 
(trained by Bayesian regularization technique with 8 



M. K. Sevindir et al. / Artificial Neural Network Techniques for the Determination of Condensation Nusselt Number in Horizontal Smooth Tubes 

876 
 

neurons) with increased quality during the condensation of 
the refrigerants (a) R22, (b) R134a , (c) for %50 R32/ %50 
R125 azeotropic mixtures, (d) for 60% R32/ 40%R125 
azeotropic mixtures 

4. Conclusion 
 

Prediction of heat transfer characteristic of a 
condensation in horizontal smooth tubes is 
investigated. The condensation of the R22, R134a 
refrigerants and 60% R32/ 40% R125, 50% 
R32/50% R125 azeotropic mixture refrigerants is 
carried out with ANN.  The analysis is carried out 
using the data supplied by Dobson et al [1]. The 
parameters are mass flux, quality, hydrodynamic 
diameter, FrSO number, density and dynamic viscosity 
of liquid phase measured in the experimental work 
are used as input parameters of ANN study. The 
compatibility of the ANN study based on these 
parameters is examined. Among the four different 
network structures, calculations are made according 
to Bayesian regularization with 8 neurons. While 
75% of experimental data is used for training, the 
rest for testing. The trained network can predict Nu 
numbers in the range of ±5-15%. It is concluded that 
ANNs are very effective in predicting Nu number. The 
concluding remarks can be summarized as: 
 

1- The most effective training algorithm is the 
Bayesian regularization with 8 neurons. 

2- The most important input parameter to lower 
the overall MSE is FrSO where simultaneous 
effect of density, hydrodynamic diameter and 
quality improves the accuracy of the estimated 
value of condensation Nu number. 

3- For the low values of quality (0<X<0.3), the 
highest error is observed (around 20%). For 
higher quality values as the condensation 
continues the error margin is observed to be less 
than 15%.  

4- For higher convection heat transfer regime 
(Nu>400) the ANN calculations reach the best 
accuracy to estimate the condensation Nu 
number (MSE<15%) however when the 
conduction dominates (Nu<200) the error 
reaches 30%. 

5- It is observed that the heat transfer 
characteristics are affected by the mass flux and 
quality [18]. At low mass flux flow regime, the 
condensation Nu number do not change 
significantly with increasing quality whereas for 
higher mass fluxes the condensation Nu number 
increases significantly with increased quality. 
Here a strong dependence on mass flus and 
quality is shown and this pattern has also been 
reported by Wang et al [18]. 
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