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Abstract 

The transient analysis of nuclear reactors is a very important issue from the safety point 

of view. The point reactor kinetics equations are extensively used in the analysis of the transient 

behavior of the nuclear reactors. The experimental results confirm that the dynamical behavior 

of the strongly reflected reactors cannot be adequately characterized by the conventional one-

point reactor kinetics equations. In this study, a Green's function generation method is 

developed to solve the two-point reactor kinetics equations for a subcritical source-driven 

reflected reactor with one group of delayed neutron precursors during the reactor start-up.  

Moreover, the two-point reactor kinetics equations are solved using the prompt-jump 

approximation method and it is shown that the obtained results are in good agreement with the 

results obtained from the Green’s function generation method. The validity of the given 

methodologies is also demonstrated through comparison with asymptotic solutions. 

Keywords: Point reactor kinetics model, Reflected reactor, Green’s function, Prompt jump 

approximation 

Kaynak-Güdümlü Yansıtıcılı Reaktörlerin İki-Nokta Kinetik 

Denklemlerinin Green Fonksiyon Üretim Yöntemi ile Çözümü 

Öz 

Nükleer reaktörlerin zamana bağlı analizi güvenlik açısından çok önemli bir faktördür. 

Nokta reaktör kinetik denklemleri nükleer reaktörlerin zamana bağlı davranışlarının analizinde 

yaygın olarak kullanılmaktadır. Deneysel sonuçlar, yaygın olarak kullanılan tek nokta reaktör 

kinetik modelinin güçlü yansıtıcılı reaktörlerin dinamik davranışlarının tanımlanmasında 

yetersiz olduğunu göstermektedir. Bu çalışmada, reaktörün çalışmaya başlatılması sırasında bir 

grup gecikmiş nötron öncüleri içeren kritik altı kaynak güdümlü yansıtıcılı reaktörün iki nokta 

reaktör kinetik eşitliklerinin çözümüne yönelik bir Green fonksiyon üretim yöntemi 

geliştirilmiştir. Bunun yanı sıra, iki-nokta reaktör kinetik denklemlerini çözmek için ani sıçrama 

yaklaşım yöntemi kullanılmıştır. Sonuç olarak ani sıçrama yaklaşım yöntemi ve Green 

fonksiyon üretim yöntemi ile elde edilen sonuçların uyum içinde olduğu bulunmuştur. Önerilen 

yöntemlerin geçerliliği asimptotik çözümlerle karşılaştırılarak da doğrulanmıştır. 

Anahtar Kelimeler: Nokta reaktör kinetik modeli, yansıtıcılı reaktör, Green fonksiyonu, Ani 

sıçrama Yaklaşımı
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Introduction 

Source-driven systems are the 

subcritical reactors, in which the chain 

reactions are sustained by the external 

neutron source. In these systems, the power 

level strongly depends on the level of 

subcriticality, external source strength and 

position of the external sources. Increasing 

the source strength and bringing the 

multiplication factor closer to one cause the 

power level to increase. During the initial 

reactor start-up, the reactor is in a subcritical 

condition and the external neutron source 

plays a crucial role from the reactor control 

point of view. Since in the reactor start-up 

process, the average temperature of the 

reactor core is lower and the power added is 

smaller, the temperature reactivity feedback 

mechanism can be neglected [1-3]. 

The point reactor kinetics equations 

are a system of coupled differential 

equations and solve to predict the time 

evolutions of the reactor power and the 

precursor concentration. To derive the point 

kinetics equations, the spatial dependency 

of the general neutron balance equations are 

eliminated. Therefore, the reactor only 

varies in time, such that it is essentially 

treated as a point. The entire reactor in the 

conventional point reactor kinetics model is 

taken as a point multiplying media with an 

effective neutron generation time. 

Conventional point kinetics equations with 

one effective group of delayed neutron 

precursors and in presence of the external 

neutron source are expressed in the form of 

[4-7]: 

{
 
 

 
 𝑑𝑁(𝑡)

𝑑𝑡
=
𝜌(𝑡) − 𝛽

Λ
  𝑁(𝑡) + 𝜆 𝐶 (𝑡) + 𝑆(𝑡)
 

𝑑𝐶 (𝑡)

𝑑𝑡
=
𝛽 
Λ
  𝑁(𝑡) − 𝜆 𝐶 (𝑡)                           

(1) 

In this system of equations 𝜌(𝑡) is 

the system reactivity, Λ  is the neutron 

generation time, 𝛽  and 𝜆  are the delayed 

neutron fraction and decay constant of the 

precursors, respectively, 𝑆(𝑡)  represents 

the effective external neutron source, 𝐶 (𝑡) 

is the weighted precursor density, and  𝑁(𝑡) 

is the weighted neutron population which is 

also referred to as amplitude function and 

taken proportional to actual neutron density 

and actual reactor power.  

The experimental results exhibit that 

the conventional one-point reactor kinetics 

model cannot properly predict the 

dynamical behavior of the strongly 

reflected reactors in which a small core is 

surrounded by a thick reflector. In such 

reactors, the effective neutron generation 

time is affected by the neutron migration 

time in the reflector region [8-10]. 

Therefore, the dynamical behavior of the 

reflected reactors has been analyzed by the 

Two-Point Reactor Kinetics Model 
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(TPRKM). This model is based on the 

coupled reactor theory developed by Avery 

and was first derived by Cohn and re-

derived by Van Dam and Spriggs et al. [11-

13,8]. In this model, the fraction of fission 

neutrons leaking from the core to the 

reflector ( 𝑓𝑐𝑟 ) and fraction of reflector 

neutrons returning back to the core (𝑓𝑟𝑐 ), 

known as reflected reactor coupling 

parameters, describe the migration of 

neutrons between core and reflector. 

Deterministic two-point reactor kinetics 

equations with external neutron source in 

the core region and also with one group of 

delayed neutron precursor is expressed as 

[9,13]: 

{
 
 
 
 

 
 
 
 
𝑑𝑁𝑐(𝑡)

𝑑𝑡
=
𝜌(𝑡) − 𝛽 − 𝑓𝑐𝑟 𝑓𝑟𝑐

𝛬𝑐
  𝑁𝑐(𝑡) +   

                          
𝑓𝑟𝑐
𝑙𝑟
𝑁𝑟(𝑡) + 𝜆 𝐶 (𝑡) + 𝑆(𝑡)
 

𝑑𝑁𝑟(𝑡)

𝑑𝑡
=
𝑓𝑐𝑟  

𝛬𝑐
 𝑁𝑐(𝑡) −

𝑁𝑟(𝑡)

𝑙𝑟
                  

 
𝑑𝐶 (𝑡)

𝑑𝑡
=
𝛽 
Λc
  𝑁𝑐(𝑡) − 𝜆 𝐶 (𝑡)                   

  (2) 

where 𝑁𝑐(𝑡)  is the neutron population in 

the core region and is taken proportional to 

reactor power, 𝑁𝑟(𝑡) represents the neutron 

population in the reflector region, Λc is the 

neutron generation time in the core region, 

𝑙𝑟  is the neutron lifetime in the reflector 

region,  𝜌(𝑡) = 𝜌∞(𝑡) − 𝑓𝑐𝑟(1 − 𝑓𝑟𝑐) is the 

system reactivity, and 𝜌∞(𝑡) is the infinite 

core reactivity.  

In the case of different perturbation 

scenarios in the absence and presence of 

temperature reactivity feedback, different 

deterministic numerical solution methods 

such as analytical inversion method, 

fundamental matrix method and analytical 

exponential technique were developed to 

solve the source free version of the TPRKM 

[9, 14-16]. Analytical solution for source 

free form of the TPRKM with constant 

kinetics parameters was presented by 

Holschuh et al. [17]. They showed that, by 

decreasing the reflector return fraction 𝑓 (=

 𝑓𝑐𝑟  ×  𝑓𝑟𝑐 ) the two and one point reactor 

kinetics models become identical.  

In this work, the dynamical behavior 

of subcritical source-driven reflected 

reactors with constant kinetics parameters 

during the reactor start-up (with 𝑁𝑐(0) = 0) 

is evaluated analytically and  effects of the 

source strength and coupling parameters on 

the time evolution of the reactor power are 

investigated. The system response to a unit 

neutron pulse which is inserted to the 

system at time 𝑡 = 𝑡’ 𝑠 is called the Green’s 

function. In the present study, without 

dealing with complicated numerical 

methods to solve the linear non-

homogeneous two-point reactor kinetics 

equations, the corresponding Green’s 

functions for the neutron populations and 

precursor concentration are generated 
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analytically and used to predict the 

dynamical behavior of the reflected 

systems. Besides the corresponding 

expressions for the neutron population in 

the core and reflector regions are derived 

from the prompt jump approximation (PJA) 

method and the obtained results are 

compared to the results obtained from the 

Green's function generation method. 

Material and Methods 

In this section, the Green’s Function 

Generation method and Prompt Jump 

Approximation method are used to solve the 

linear non-homogeneous form of the 

TPRKM. 

Green’s Function Generation Method 

The system response to a unit neutron 

pulse that is introduced to the system (core 

region) at time 𝑡 =  𝑡′  gives us the 

corresponding Green's functions for the 

neutron populations and precursor 

concentration: 

𝑑

𝑑𝑡
 𝑔̅(𝑡, 𝑡′) = 𝐴 ̿𝑔̅(𝑡, 𝑡′)

+ 𝑓(̅𝑡, 𝑡′)                           (3) 

where 

𝑔̅(𝑡, 𝑡′) = (

𝐺𝑐(𝑡, 𝑡′)

𝐺𝑟(𝑡, 𝑡
′)

𝐺𝑝(𝑡, 𝑡
′)
), 

𝐴 ̿ =

(

 
 
 
 

𝜌 − 𝛽 − 𝑓𝑐𝑟 𝑓𝑟𝑐
𝛬𝑐

 
𝑓𝑟𝑐
𝑙𝑟

 𝜆 

𝑓𝑐𝑟  

𝛬𝑐
 −
1

𝑙𝑟
 0

𝛽 
Λc

 0  −𝜆 )

 
 
 
 

 

and 

𝑓(̅𝑡, 𝑡′) = 𝛿(𝑡 − 𝑡′) (
1
0
0
) 

𝐺𝑝(𝑡, 𝑡
′)  represents Green's function 

corresponding to the precursor density, and  

𝐺𝑐(𝑡, 𝑡′) and 𝐺𝑟(𝑡, 𝑡
′) represent the Green's 

functions corresponding to the neutron 

population in the core and reflector regions, 

respectively. 

The 3 by 3 matrix 𝐴 ̿  can be 

diagonalized and written in the form of: 

𝐴 ̿

= 𝑃 ̿𝐷 ̿𝑃 ̿−1                                                          (4) 

where 

  𝑃 ̿ =

(

 
 

 1 1 1
𝑓𝑐𝑟

𝛬𝑐(
1

𝑙𝑟
+𝜔1)

𝑓𝑐𝑟

𝛬𝑐(
1

𝑙𝑟
+𝜔2)

𝑓𝑐𝑟

𝛬𝑐(
1

𝑙𝑟
+𝜔3)

𝛽 

𝛬𝑐(𝜆+𝜔1)

𝛽 

𝛬𝑐(𝜆+𝜔2)

𝛽 

𝛬𝑐(𝜆+𝜔3))

 
 
    

and 

  𝐷̿ = (
𝜔1 0 0
0 𝜔2 0
0 0 𝜔3

) 

𝜔𝑖 's are the eigenvalues of the matrix 𝐴 ̿; 

and 𝑃 ̿is an invertible matrix whose each 

column is the corresponding eigenvector 
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of the matrix 𝐴 ̿ corresponding to 

eigenvalue 𝜔𝑖. 

System of equations (3) is a non-

homogeneous linear system of differential 

equations with constant coefficients, and 

can be decoupled by setting: 

𝑔̅(𝑡, 𝑡′)

= 𝑃 ̿𝑢̅(𝑡, 𝑡′)                                                  (5) 

where  

𝑢̅(𝑡, 𝑡′) = (

𝑢𝑐(𝑡, 𝑡′)

𝑢𝑟(𝑡, 𝑡
′)

𝑢𝑝(𝑡, 𝑡
′)
) 

The corresponding system for 𝑢̅(𝑡, 𝑡′) 

becomes as follows: 

d

dt
 𝑢̅(𝑡, 𝑡′) = 𝐷 ̿𝑢̅(𝑡, 𝑡′)

+ 𝑃 ̿−1𝑓(̅𝑡, 𝑡′)                  (6) 

It is known that there are no free 

neutrons at the beginning of start-up. 

Therefore, as initial conditions, the neutron 

populations in the core and reflector regions 

and precursor concentration are taken equal 

to zero. Hereby, due to initial conditions, 

𝑢̅(0, 𝑡′)  becomes equal to zero and 

decoupled system of differential equations 

(6) is solved as follows: 

𝑢𝑐(𝑡, 𝑡
′)

=
(𝜔3 −𝜔2) (

1
𝑙𝑟
+𝜔1) (𝜆 + 𝜔1) 𝑒

−𝜔1(𝑡
′−𝑡)

𝜒(𝜔1, 𝜔2, 𝜔3)
(7) 

𝑢𝑟(𝑡, 𝑡
′)

=
(𝜔1 −𝜔3) (

1
𝑙𝑟
+𝜔2) (𝜆 + 𝜔2) 𝑒

−𝜔2(𝑡
′−𝑡)

𝜒(𝜔1, 𝜔2, 𝜔3)
(8) 

𝑢𝑝(𝑡, 𝑡
′)

=
(𝜔2 −𝜔1) (

1
𝑙𝑟
+𝜔3) (𝜆 + 𝜔3) 𝑒

−𝜔3(𝑡
′−𝑡)

𝜒(𝜔1, 𝜔2, 𝜔3)
(9) 

where  

𝜒 = 𝜔3
2(𝜔2 − 𝜔1) + 𝜔2

2(𝜔1 − 𝜔3)  

+ 𝜔1
 2(𝜔3 − 𝜔2) 

Using the expression given in 

equation (5) the Green’s functions are 

resulted as follows: 

𝐺𝑐(𝑡, 𝑡
′) = 𝑢𝑐(𝑡, 𝑡

′) + 𝑢𝑟(𝑡, 𝑡
′)

+ 𝑢𝑝(𝑡, 𝑡
′)                          (10) 

𝐺𝑟(𝑡, 𝑡
′)

=
𝑓𝑐𝑟

𝛬𝑐 (
1
𝑙𝑟
+ 𝜔1)

𝑢𝑐(𝑡, 𝑡
′)

+
𝑓𝑐𝑟

𝛬𝑐 (
1
𝑙𝑟
+ 𝜔2)

𝑢𝑟(𝑡, 𝑡
′)

+
𝑓𝑐𝑟

𝛬𝑐 (
1
𝑙𝑟
+ 𝜔3)

𝑢𝑝(𝑡, 𝑡
′)                        (11) 

𝐺𝑝(𝑡, 𝑡
′)

=
𝛽 

𝛬𝑐(𝜆 + 𝜔1)
𝑢𝑐(𝑡, 𝑡

′)

+
𝛽 

𝛬𝑐(𝜆 + 𝜔2)
𝑢𝑟(𝑡, 𝑡

′)

+
𝛽 

𝛬𝑐(𝜆 + 𝜔3)
𝑢𝑝(𝑡, 𝑡

′)                          (12) 

Using the resulting Green's 

functions, the time-dependent neutron 

population and precursor concentrations are 

obtained from the following integrals: 
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𝑁𝑐(𝑡)

= ∫ 𝑆(𝑡′)
𝑡

𝑡′=0

𝐺𝑐(𝑡, 𝑡
′) 𝑑𝑡                        (13) 

𝑁𝑟(𝑡)

= ∫ 𝑆(𝑡′)
𝑡

𝑡′=0

𝐺𝑟(𝑡, 𝑡
′) 𝑑𝑡                        (14) 

𝐶(𝑡)

= ∫ 𝑆(𝑡′)
𝑡

𝑡′=0

𝐺𝑝(𝑡, 𝑡
′) 𝑑𝑡′                      (15) 

Prompt Jump Approximation  

In the nuclear reactors, prompt 

neutron average lifetime changes from 

10−7𝑠  to  10−5𝑠  whereas the delayed 

neutron precursor average lifetime varies 

from 10−2𝑠  to  10+2𝑠 . The effective 

lifetime of the neutrons is given in Equation 

(16) where the average lifetime of delayed 

neutron is roughly taken equal to precursor 

lifetime. 

𝑙𝑒̅𝑓𝑓 = (1 − 𝛽)𝑙𝑝̅𝑟𝑜𝑚𝑝𝑡

+ 𝛽
1

𝜆
                               (16) 

The nuclear reactors are designed to 

operate in delayed critical and prompt 

subcritical conditions. In prompt 

supercritical (𝜌 > 𝛽) conditions the prompt 

neutrons alone make the reactor 

supercritical and due to small lifetime of the 

prompt neutrons the reactor control with 

mechanical equipment becomes almost 

impossible. In contrast, in both delayed 

critical (𝜌 = 0) and delayed supercritical 

(𝜌 < 𝛽 ) operation conditions the prompt 

neutrons alone are not sufficient to sustain 

the fission chain reactions. In these 

conditions, the delayed neutrons even with 

small fractions increase the effective 

lifetime of the neutrons, subsequently slow 

down the system behavior, and make the 

reactor control easier [18]. In the case of the 

subcritical source-driven systems the 

fission chain reactions are sustained by the 

external neutron sources. 

In the case of any reactivity 

insertion into an initially critical system, 

which is operated in any condition except 

the prompt supercritical condition, we 

experience a sudden change with a sharp 

slope in the reactor power for a short time 

domain. This effect is known as prompt 

jump and caused due to differences between 

precursors and prompt neutrons' lifetimes. 

In a short time domain, change of the 

precursor concentration due to inserted 

reactivity is negligible, and delayed 

neutrons will still be emitted at a rate 

determined by earlier conditions. In 

contrast, the prompt neutron population will 

be fully adjusted to the new multiplication 

factor. Therefore, the flux will change to a 

level that is allowed by the new 

multiplication of prompt neutrons plus the 

generation of delayed neutrons based on the 

old conditions. By passing the time, the 
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precursors start to adjust to new conditions 

and subsequently cause to decrease in the 

slope of power change and finally, after a 

transient time, the precursors and neutrons 

will have an asymptotic exponential 

behavior in time. 

It is known that for the cases that 𝜌 

is less than 𝛽, the neutron generation time is 

almost equal to neutron lifetime. In the 

Prompt Jump Approximation method, the 

rapid change in power after reactivity 

insertion due to prompt neutrons 

generations is neglected; and  Λ𝑐 (𝑑𝑁(𝑡)/

𝑑𝑡 |𝑡0)  is taken equal to zero, where 𝑡0 

represents the reactivity insertion time [19-

20] . 

In case of two-point reactor kinetics 

model by taking both Λ𝑐 (𝑑𝑁𝑐(𝑡)/𝑑𝑡 |𝑡=0) 

and Λ𝑐 (𝑑𝑁𝑟(𝑡)/𝑑𝑡 |𝑡=0) equal to zero, and 

after some mathematical operations the 

neutron population in the core and reflector 

regions are obtained as follows: 

𝑁𝑐(𝑡)

=
𝛬𝑐

𝜌(𝑡) − 𝛽
 [−𝑆(𝑡)

+ 𝑆(𝑡0−)𝑒
−∫

𝜆𝜌(𝑡) 
𝜌(𝑡)−𝛽

 𝑑𝑡
𝑡
𝑡0 ]

+
𝜌(𝑡0−) − 𝛽

𝜌(𝑡) − 𝛽
𝑒
−∫

𝜆𝜌(𝑡) 
𝜌(𝑡)−𝛽

 𝑑𝑡
𝑡
𝑡0 𝑁𝑐(𝑡0)

+
𝜆 𝛬𝑐

𝜌(𝑡) − 𝛽
𝑒
−∫

𝜆𝜌(𝑡) 
𝜌(𝑡)−𝛽

 𝑑𝑡
𝑡
𝑡0 × 

[∫
 𝛽

𝜌(𝑡) − 𝛽
 𝑆(𝑡) [𝑒

−∫
𝜆𝜌(𝑡) 
𝜌(𝑡)−𝛽

 𝑑𝑡
𝑡

𝑡0 ]  𝑑𝑡
𝑡

𝑡0

]    (17) 

𝑁𝑟(𝑡)

=  
 𝑓𝑐𝑟 𝑙𝑟 

𝛬𝑐
 𝑁𝑐(𝑡)                                        (18) 

Precursor concentration is also 

obtained in the form of: 

𝐶(𝑡) =  −
𝜌(𝑡) − 𝛽

𝜆 𝛬𝑐
 𝑁𝑐(𝑡)

−
𝑆(𝑡)

𝜆
                            (19) 

Results and Discussions  

As a study case, the zero-power 

research reactor PROTEUS consists of a 

relatively small core (about 1 cubic meter) 

surrounded by a thick graphite reflector is 

taken into consideration [9,13]. The kinetics 

parameters in subcritical condition are 

presented in table (1). Using the expression 

which relates the system reactivity with the 

coupling parameters, the system reactivity 

becomes equal to −0.003.  

Table 1.  The kinetics parameters for the 

subcritical reflected reactor. 

𝝆∞ 0.397 

𝚲𝒄(𝒎𝒔) 0.4 

𝒍𝒓 (𝒎𝒔) 4.0 

𝒇𝒓𝒄 0.5 

𝒇𝒄𝒓 0.8 

𝝀 (𝒔
−𝟏) 0.07696 

𝜷  0.00723 

 

As the first test problem, it is 

assumed that at 𝑡 = 0 𝑠 an external neutron 

source of the strength of 200 𝑛/𝑠  is 

inserted into the system. The time-
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dependent neutron population in the core 

and reflector regions as well as the time-

dependent precursor concentration are 

calculated from the Green’s function 

generation method and presented in 

equations (20) through (22).  

𝑁𝑐(𝑡)

= 26.667 − 0.12694 𝑒−1270.5 𝑡

− 7.5284 𝑒−5.086 𝑡

− 19.011 𝑒−0.02233 𝑡                                (20) 

𝑁𝑟(𝑡)

= 213.33 + 0.24877 𝑒−1270.5 𝑡

− 61.478 𝑒−5.086 𝑡

− 152.1 𝑒−0.02233 𝑡                                  (21) 

𝐶(𝑡)

=  6262.99 + 0.001806 𝑒−1270.5 𝑡

+ 27.166 𝑒−5.086 𝑡

− 6290.16 𝑒−0.02233 𝑡                             (22) 

Using the prompt jump 

approximation, the results are as follows: 

𝑁𝑐(𝑡)

=  26.667 −  18.847 𝑒−0.02257 𝑡         (23) 

𝑁𝑟(𝑡)

=  213.33 −  150.77 𝑒−0.02257 𝑡         (24) 

𝐶(𝑡)

=  6262.99 −  6262.99 𝑒−0.02257 𝑡     (25) 

As it is seen, in compare with 

Green’s function generation method, in the 

prompt jump approximation method the 

two exponential terms with more negative 

exponents are omitted, and only the 

dominant exponential term remains. Due to 

the problem subcriticality, the attenuation 

rate of the remained term is less than the 

other two terms. In the case of positive 

reactivity insertion, the exponent of the 

dominant exponential term is positive in 

which by increasing the reactivity its value 

goes up.   

The time evolutions of the neutron 

population in the core and reflector as well 

as the precursor concentration time 

evolution are plotted in Fig. (1). It is 

observed that the neutron population in the 

core and reflector regions are calculated as 

7.82 and 62.56, respectively, with the PJA 

method at 𝑡 =  0 𝑠.

 

Figure 1. Neutron population and precursor concentration for the first test case 
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It is known that for a constant 

neutron source, the system reaches the 

constant equilibrium condition after a long 

time. Under the equilibrium condition, from 

the system of equations (2),𝑁𝑐𝑒𝑞becomes 

equal to −(𝛬𝑐 𝑆)/𝜌. Subsequently 𝑁𝑟𝑒𝑞  and 

𝐶eq become equal to (𝑙𝑟𝑓𝑐𝑟/𝛬𝑐)𝑁𝑐𝑒𝑞 and 

(𝛽 /𝜆Λc)𝑁𝑐𝑒𝑞 , respectively. As it is seen in 

Fig. (1) the results obtained from the 

Green’s function generation method and 

PJA method asymptotically reach to the 

equilibrium conditions. This, in turn, 

indicates the correctness of our proposed 

solution methods. 

The differences between the neutron 

populations obtained from the Green’s 

function generation method and PJA 

method, in the core and reflector regions, 

are plotted in Fig. (2). It is seen that these 

differences asymptotically tend to zero. 

Therefore, if we are interested in long time 

behavior of the nuclear reactors the PJA 

method can be an efficient method. 

 

Figure 2. The differences between neutron populations obtained from the Green’s function 

generation method and PJA method in the core and reflector regions 

As the second test problem, it is 

assumed that at 𝑡 = 0 𝑠  a time-dependent 

external source, 𝑆(𝑡) = 200 𝑒0.005 𝑡 𝑛/𝑠, is 

inserted into the system. As seen in Fig. (3) 

the Green function generation method and 

PJA method are in good agreement. It is 

seen that despite the system subcriticality 

the power and reflector region neutron 

population increase with time. This increase 

is due to the increase in external neutrons 

with time.
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Figure 3. Neutron population and precursor concentration for the second test case 

The Green’s function generation 

method is also used to obtain the neutron 

population in the core and reflector regions 

for different 𝑓𝑟𝑐 values where the 𝑓𝑐𝑟(=

0.8) is kept constant. As it is seen in Fig. 

(4), any increase in  𝑓𝑟𝑐 causes an increase 

in the reactivity and then an increase in 

neutron population.  

 

Figure 4. Neutron population with varying 𝑓𝑟𝑐

Conclusion 

The dynamical behavior of the 

subcritical source-driven reflected reactor 

during the reactor start-up is investigated by 

solving two-point reactor kinetics 

equations. In deterministic numerical 

solution methods, the time domain is 

divided into small time-intervals in which 

the non-homogeneous system of 

differential equations is solved in each 

time-interval and used to estimate the 

dynamical behavior of the source-driven 

reflected reactors. In this work, without 

dealing with such cumbersome solution 

methods, the corresponding Green’s 

function for the neutron population and 

precursor concentration are derived and 

used to predict the dynamical behavior of 
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the reflected systems. In the present study, 

the neutron populations in the core and 

reflector regions and precursor 

concentration are also calculated using the 

Prompt Jump Approximation method in 

which the rapid change in power after 

reactivity insertion due to prompt neutrons 

generations is neglected. Although the PJA 

method does not predict the dynamical 

behavior in the prompt jump region it is 

seen that obtained results for the dynamical 

behavior of the exponential region from 

both PJA and Green’s Function Generation 

methods are in good agreement with each 

other; the difference between the results of 

these methods asymptotically tends to zero. 

In addition, in the case of a neutron source 

with constant intensity, the dynamical 

behavior of the system asymptotically 

reaches the constant equilibrium condition 

where both PJA and Green’s function 

generation methods exactly predict the 

asymptotic values.  These results are strong 

evidence for the validity of the proposed 

solution methods. 

Although the Green's function 

generation method is useful to solve the 

linear non-homogeneous system of 

differential equations, in the presence of the 

temperature reactivity feedback 

mechanism, the TPRKM converts to a non-

linear and non-homogeneous system of 

differential equations, and Green's function 

generation method is unable to solve such 

problems. 
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