
557 

 
 

Sigma J Eng & Nat Sci 35 (3), 2017, 557-569 
 

                                                                                                                                 
 
 
 
 

Research Article 
ANALYTICAL MODEL FOR ESTIMATION OF TEMPERATURE 
DISTRIBUTION IN PARALLEL AND COUNTER FLOW DOUBLE PIPE 
HEAT EXCHANGERS 
 
 
Burak KURŞUN1, Bülent Nafi ÖRNEK2, Korhan ÖKTEN*3  

 
1Amasya University, Mechanical Engineering Department, AMASYA; ORCID:0000-0001-5878-3894 
2Amasya University, Computer Engineering Department, AMASYA; ORCID:0000-0001-7109-230X 
3Amasya University, Mechanical Engineering Department, AMASYA; ORCID:0000-0002-8728-8785 
 
Received: 30.05.2017   Accepted: 18.07.2017 
 
  
ABSTRACT 
 
Heat exchangers are a widely used as a device for meeting the heat transfer requirement in industrial 
applications. Many types of innovative heat exchanger designs have been implemented with the aim of 
increasing heat transfer. Numerous experimental and numerical studies are available in the literature on 
obtaining heat transfer and temperature distribution these systems. In the present study, an analytical model 
was developed to solve the nonlinear differential energy equation in order to estimate the temperature 
distribution in the parallel and counter flow double pipe heat exchanger. These analytical solutions have 
occurred of Bessel functions. A numerical study was carried out to determine the validity of the analytical 
results. Moreover, the analytical and the numerical results were compared with each other. Water is used as a 
fluid and the analyses were carried out for laminar and steady-state flow conditions at a certain Reynolds 
number (Re=1500). The findings showed that the analytical results for temperature distribution in the radial 
direction are in good agreement with the numerical results for all the flow conditions. However, the analytical 
model for the temperature distribution in the axial direction yielded more accurate results in the parallel flow 
conditions.  
Keywords: Counter flow, double pipe heat exchanger, heat transfer, parallel flow. 
 
 
1. INTRODUCTION 
 

In cooling and heating systems of industrial application, heat exchangers are taken part of 
important role. There are many numerical, analytical and experimental studies in the literature 
about heat transfer and temperature distribution in the heat exchanger. For complex geometries, 
numerical methods are more preferred because exact solutions of analytical equations are 
complex and difficult. Besides that, numerical solutions have convergence, stiffness, numerical 
diffusion, and stability problems [1]. Isaza et al. examined analytical solutions of moving bed heat 
exchangers. The paper presented formulation and non-dimensional analyzation of steady state 
energy equation for co-current parallel plate systems. Temperature functions for the solids and 
fluid were formulated [2]. Quintero and Vera studied theoretically and numerically for 
multilayered, counter flow, parallel-plate heat exchangers. The exact solution for the temperature 
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field provides analytical express ions for the interfacial and bulk temperatures, local heat-transfer 
rates, overall heat-transfer coefficient, Nusselt numbers, and outlet bulk temperatures of both 
fluids. Same parameters were evaluated with numerical solutions. The results of solutions were 
seen excellent agreement with studies in the literature [3]. Single phase liquid heated with 
constant temperature fluid was examined by Yin and Jensen. They calculated liquid temperature 
with numerical and analytical methods. The results of both solutions were seen that compatible 
with each other. [4]. Tunnel lining ground heat exchanger was used to solve the freezing damage 
problem of tunnel in a cold region by Zhang et al. The study presented as an analytical and 
experimental study for different heat exchanger parameter [5]. 

Double pipe heat exchanger which is one of the heat exchanger types, is commonly used in 
chemical, food, oil and gas industries due to their low cost of design and maintenance[6]. In the 
type of this exchanger cold and hot fluid flow either a counter or parallel direction. So, heat 
transfer between hot and cold water is occurred [7]. A few analytical study about double pipe heat 
exchanger were examined in the literature. Lachi et al investigated the behavior of a double pipe 
or shell and tube heat exchangers on transient phase when a sudden change of the flow rate 
imposed at the entrance of the two inlets. Analytical and experimental solution of this condition 
were compared. The results showed that experimental investigations were in a good agreement 
with theoretical results. [8] Nunge and Gıll developed orthogonal expansion technique for solving 
a new type of counter-flow in double pipe heat exchanger. The local Nusselt numbers and the 
temperature changing at the wall between the two streams were identified. Besides that bulk 
temperature changes in the two streams and mean overall Nusselt numbers were given [9]. 
Transient response of temperatures along a tubular counter flow heat exchanger was investigated 
when mass flow rate is subjected to sudden change by Abdelghani-Idrissi et al. [10]  
 

  
In this study, an analytical model was developed with the aim of estimating the temperature 

distribution in parallel and counter-flow double pipe heat exchangers. Analytical solutions of 
nonlinear differential equations have been performed using the separation method of variables. 
Numerical analysis was performed to verify analytical solutions and analytical and numerical 
results were compared. 
 
 
 

Nomenclature
 

R  Radius of inner pipe, mm  The thermal diffusivity of water, m2s-1 

L  Length of pipe, mm Subscript  

R  Radius of outer pipe, mm ave Average 

r  Radius, mm f Film 
Re Reynolds number i Grid location at the direction of radial 

T  Temperature value, Ԩ in Inner pipe 

V Velocity of water in the axial 
direction, m/s 

j Grid location at the direction of axial 

Greek Symbols o Outer pipe 
  Coefficient that includes the pipe 

dimensions 
w Wall 

 and the thermal properties of the fluid amb ambient 

  The dimensionless axial distance ins Insulation 

  The dimensionless radial distance   

  Dimensionless temperature   

B. Kurşun, B.N. Örnek, B. Kurşun    / Sigma J Eng & Nat Sci 35 (3), 557-569, 2017 



559 

 
 

2. PHYSICAL SKETCH AND MATHEMATICAL MODEL 
 

The geometry used for examining the temperature distribution in a double pipe heat 
exchanger is given in Fig. 1. The temperature distribution is investigated for cases where the flow 
is parallel and counter in the inner and outer pipes. Analyses were carried out for the laminar and 
steady-state flow condition. Water was used as a fluid and it was assumed that the fluid was 
newtonian, incompressible and the convection properties of fluid were constant. The effect of 
gravitational acceleration was neglected for the reason that the flow occurred in a horizontal 
position.  
 

 
 

Figure 1. Pipe geometry 
 

The energy equation used for temperature distribution was established by assuming that 
convection heat transfer was only in the axial direction, and that conduction heat transfer was 
only in the radial direction. Instead of the velocity change in the axial direction, the average axial 
velocity in the pipe was calculated and included in the energy equation. The energy equation for 
the above-mentioned assumptions is given below, 
 

2

, 2

1 1
z ave

T T T
V

z r r r
  

 
  

,                                                                                                  (1) 

 

where is the thermal diffusivity of water, T is the water temperature and 
,z aveV is the 

average velocity of water in the axial direction. The dimensionless form of the energy equation is 
expressed by Eq. (2), 
 

 
                                                                      (2) 
 
 

 

In the Eq.2,  is the dimensionless temperature,   and   are the dimensionless radial and 

axial distance, respectively.   is a coefficient that includes the pipe dimensions and the thermal 

properties of the fluid. Dimensionless expressions are given below, 
 

 
 
                     (3) 
 

 

In the equations, L is the pipe length, R  is the radius of the inner pipe, 
iT  is the inlet 

temperature of water and 
wT  is the wall temperature of inner pipe.  
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The boundary conditions established according to the reference coordinate axes by 
considering the pipe outer surface as adiabatic and centerline of inner pipe is symmetry axis are 
given below, 

 
    
                                                                                                           (4a) 

 
 

 
                                                                                               (4b) 

   

                                                                                                      (4c) 
 

 
3. ANALYTICAL SOLUTION 
 

We apply the variables separation technique for Eq. (2) and (4). Let ( ) ( )X Yq h x=  in Eq. 

(2). Then  

1
XY X Y X Yb

h
¢ ¢ ¢¢= +                                                                                                         (5) 

or dividing by XY , 
 

21Y X X

Y X X
b l

h
¢ ¢ ¢¢
= + =-                                                                                                (6) 

from which 

2 21
0, 0X X X Y Yl b l

h
¢¢ ¢ ¢+ + = + =                                                                       (7) 

General solutions using boundary conditions in Eq. (4) 

1 0 1 0( ) ( ) ( )n nX A J B Yh l h l h= + ,  

2

1( )
n

Y C e
l x
bx

-
=                                                   (8) 

 

Since  ( ) ( )X Yq h x=  is bounded at 0h= , then 1 0B = . Therefore, we take 
2

0( , ) ( )
n

nCJ e
l x
bq h x l h

-
=   ,                                                                                                 (9) 

where 1 1C AC= . 

From the second boundary condition (4b) 
2

0(1, ) ( ) 0
n

nCe J
l x
bq x l

-
= = ,                                                                                            (10) 

from which 0 ( ) 0nJ l =  and 1 2, ,....nl l l=  are the positive roots.    

Thus a solution is  
2

0( , ) ( ), 1, 2,3,....
n

nCe J n
l x
bq h x l h

-
= = .                                                                   (11) 

By superposition, a solution is 

( , )
0

0

  

 




 

( ,0) 1, 0 1    

(1, ) 0, 0 1    
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To determine the unknown nC , we constrain the above solution to satisfy the condition 

( )4c  as: 

0
1

( ,0) ( ) 1n n
n

C Jh l h
¥

=

Q = =å .                                                                                         (13) 

Using the Fourier series, we obtain 
1

02
1 0

2
( )

( )n n
n

C J d
J

h l h h
l

= ò .                                                                                         (14)  

Therefore, the temperature distribution for parallel and counter-flow in the inner and the 
outher pipe can be written as 
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Thus, as a solution of the Eq.2 , Eq.17 was obtained. 
 
4. NUMERICAL SOLUTION 
 
4.1. Grid structure 
 

The flow in the pipes is axisymmetric for both parallel and counter flow conditions. For this 
reason, half of the double pipe geometry was modeled for the numerical analysis. The structured 
grid was used in the calculation area and the grid structure was intensified in areas near the pipe 
walls. The geometry, mesh structure and reference coordinate axes for parallel and counter flow 
conditions are shown in Fig. 2.  
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Figure 2. Geometry of pipes and reference coordinate axes for inner and outer pipe a) parallel 
flow b) counter flow 

 
4.2. Solution method 
 

In the numerical solution of the problem in which the mathematical model is formed, the 
finite volume method is used. Numerical analyses were performed using the ANSYS-Fluent 
program. The SIMPLE algorithm was used to solve the pressure-velocity coupling in discretized 
conservation equations and Second Order Upwind scheme was used to find the intermediate point 
values in the grid structure created for the numerical analysis.  The convergence criterion for the 
mass, momentum and energy conservation equations is expressed by the equation given below. 
 

1
6

1

( , ) ( , )
10

( , )

n n

n

i j i j

i j

 








 ,                                                                                             (18) 

where n  and 1n+  represent two consecutive iterations and δ is any variable, and i  and j 
are the grid locations at the direction of radial and axial, respectively. 
 
4.3. Verification of numerical results 
 

For the fully developed laminar flow condition, the following analytical equation is used in 
obtaining the velocity profile [11], 

2

2
( ) 2 1ave

r
V r V

R

 
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 
 ,                                                                                                      (19) 
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where aveV  is the average velocity in the pipe and R  is the outer radius of pipe. Value of 

0r=  is the point on the centerline of the pipe.  
The comparison of the numerical results for different grid sizes with the velocity values 

obtained using Eq. 19 is shown in Fig. 3. As seen in Fig. 3, the analytical results are compared for 
four different grid sizes in the radial and axial direction. In areas near the pipe wall, the velocity 
values remain about the same for all grid sizes. However, the velocity values along the pipe axis 
are influenced by the variation of grid size. After the value of 1x2mm grid size, the results are not 
affected by variation of grid size. Thus, 0.5x1mm grid size is preferred with the aim of reducing 
the analysis time. The highest error rate between analytical and numerical model is 0.5% for 
0.5x1mm grid size. This indicates that the numerical model is in agreement with the analytical 
model. 
 

 
 

Figure 3. Grid independent test and validation of numerical results 
 

5. RESULTS AND DISCUSSION 
 

Analytical and numerical analyses were carried out for parallel and counter flow conditions 
where the cold fluid was in the inner pipe and the hot fluid was in the outer pipe. The 
thermophysical properties of the fluid were determined based on the film temperature (Tf) . The 
values of pipe measurements and fluid properties used in the analyses are given in Table 1.  
 

Table 1. Parameter values 
 

Tinlet, i 

(°C) 
Tinlet, o 

(°C) 
Tf  

(°C) 
α (m2/s) L (mm) ҡR (mm) R (mm) Re 

20 80 50 1,56x10-7 1000 12,5 25 1500 
 

Fig. 4 includes the axial temperature change for different points in the radial direction under 
parallel flow conditions in the inner and outer pipe. As shown in Fig. 4a, the analytical and 
numerical results are closer to each other due to the reduced effect of the velocity boundary layer 
towards the inner tube axis (ƞ=0,4). Also, the close proximity of the temperature values can be 
explained by the fact that the average velocity value in the axial direction is close to the velocity 
value and the temperature distribution is uniform at the measuring points for ƞ=0,4 (Fig. 6a).  In 
areas near the inner pipe wall (ƞ=0,6-0,9), especially near the pipe inlet, deviations between the 
numerical and analytical results have occurred. Since the velocity boundary layer is not fully 
developed in the regions close to the pipe inlet, the velocity values in the axial direction are more 
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variable and the validity of the assumption of the mean axial velocity decreases (Fig.6a). Thus, 
deviations between temperature values occur. On the other hand, in the energy equation, the 
assumption that convection and conduction heat transfer only occurs in the axial and radial 
direction leads to the difference between the analytical and numerical results. Evaluations of the 
temperature distribution at the different axial locations for the inner pipe also apply to the outer 
pipe (Fig.4b). The temperature distribution is uniform because the fluid temperature at the points 
near the pipe outer wall is less influenced by the cold flow. In the regions close to the inner pipe 
wall, however, heat transfer is more effective and velocity boundary layer is emerged. As in the 
case of the inner pipe, fully developed flow conditions are approached in the regions close to the 
pipe outlet. Differences arise between the analytical and numerical results, depending on the 
validity of the mean velocity assumption in the axial direction. Despite the deviations between the 
results, the highest error rate is 11% for the inner and outer pipe. This result indicates that the 
analytical model for estimating the axial temperature distribution in parallel flow conditions is 
appropriate. For the temperature distribution in the radial direction (Fig. 4c and 4d), both the 
temperature distributions of the inner and outer pipes are similar. Analytical and parametric 
results are better aligned in regions close to the pipe exit. This situation shows that the use of the 
analytical model for temperature estimation is more appropriate in regions approaching fully 
developed flow conditions. In the pipe inlet area, the differences between the results are 
increasing (Fig.6a). The highest difference between analytical and numerical results is 9% at 
Ƹ=0,1. 

In Fig. 5, the axial and radial temperature distributions for the counter-flow condition are 
given. The analytical and numerical results of axial temperature values for the inner and outer 
pipe for ƞ=0.4 are in agreement (Figs.5a and 5b). The uniformity of the temperature distribution 
near the pipe outer wall and its axis ensured this result (Fig.6b). In Fig. 5a, the difference between 
the analytical and numerical results begins to increase in the regions of the pipe exit for the inner 
pipe. As seen from the temperature contour in the counter-flow condition (Fig.6b), the high 
temperature of the fluid in both pipes in the outlet region of the inner pipe causes a sudden 
increase in the inner pipe wall temperature. This causes the numerical results to differ from the 
results obtained by the exponential curve in the analytical solution. The same situation for the 
axial temperature distribution is more pronounced in the outlet regions of outer pipe (Fig. 5b). For 
the counter-flow condition, the outlet region of the outer pipe and the inlet region of the inner 
pipe are in the same position. At this position, both fluids are at low temperature and this leads to 
a further decrease in the internal pipe wall temperature, resulting in an increase in the difference 
between analytical and numerical results. When this difference is considered in terms of the 
velocity profile of the flow, it is seen that the velocity profiles at a certain point are different since 
the inlet and outlet regions of the inner and outer pipes are opposite to each other. Thus, the 
difference between the temperature gradients in the inner and outer pipes increases depending on 
the velocity profile between the viscous and inviscid regions. The analytical and numerical results 
of the temperature distributions in the radial direction for the inner and outer pipes coincide with 
each other as they are in the parallel flow condition (Fig.5c and 5d). Analytical and numerical 
results are in agreement in the other regions while the difference between the results in the 
regions close to the pipe outlet increases. When the inner and outer pipes are considered together, 
the highest difference between the temperature values is about 7%. 
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Figure 4. Variation of temperature for parallel flow a) Axial direction for inner pipe, b) Axial 
direction for outer pipe, c) Radial direction for inner pipe, and d) Radial direction for outer pipe 
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Figure 5. Variation of temperature for counter flow a) Axial direction for inner pipe, b) Axial 
direction for outer pipe, c) Radial direction for inner pipe, and d) Radial direction for outer pipe 
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a)  

 
b) 

 
 

Figure 6. Temperature and velocity contours a) parallel flow b) counter flow 
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6. CONCLUSIONS 
 

In the present study, an analytical model was developed to estimate the temperature 
distribution in a parallel and counter flow double-tube heat exchanger and the analytical results 
were compared with the numerical analysis results. The results for the axial and radial 
temperature distribution in laminar and steady-state flow conditions are given below. 

The use of the average axial velocity assumption significantly affects the agreement between 
analytical and numerical results for parallel and counter flow conditions. The velocity boundary 
layer is not fully developed in the regions near to the pipe inlet. This causes an increase in the 
difference between the axial velocity value and the average velocity value in the inlet zone. Thus, 
the compatibility between analytical and numerical results is diminishing. In the regions close to 
the pipe axis and pipe outer surface, the uniform fluid velocity and temperature improve the 
compatibility of the analytical and numerical model. The maximum difference between the 
analytical and numerical results for the temperature distribution in the axial direction is 11%. 
Except for the factors mentioned above for the counter-flow condition, the analytical and 
numerical solutions differ for the temperature distribution in the axial direction due to the 
variation of the temperature gradients in the inner and outer pipes at different ratios. In particular, 
the sudden change of the inner pipe wall temperature in the outlet regions of the inner and outer 
pipes significantly reduce the adaptation of analytical and numerical results. 

The values calculated by the analytical and numerical method for the temperature distribution 
in the radial direction comply with each other for both parallel and counter flow conditions. 
Results obtained from the analyses shows that the use of the analytical model for temperature 
estimation is more appropriate in the regions approaching fully developed flow conditions. The 
highest difference between the temperature values is about 9% and 7% for parallel and counter 
flow condition, respectively. 

The results obtained for all conditions indicate that the analytical model is more suitable for 
parallel flow double pipe heat exchangers. Analyzing by including the velocity in the axial 
direction as a variable in the energy equation can provide the analytical and numerical results 
more compatible for parallel and counter flow conditions. 
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