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ABSTRACT 

In this paper, the system of singularly Perturbed Reaction-Diffusion p roblems w hich a re 
 commonly used in physics and chemistry branches of science, were investigated. Sinc-Galerkin  
Method was used to obtaining the solution of problems. Because of there is no article about 
Sinc-Galerkin Method related to singularly perturbed Reaction-Diffusion problems in liter-
ature, the efficiency of the method was shown via this problem. There are important results 
that occurred after our research and application. Sinc Galerkin Method which was used in this 
paper as the main solution method gave better results according to parameter robust method 
and asymptotical initial value method. The figures and the tables show this competence and 
low errors.
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INTRODUCTION 

Mathematicians can model many real-life problems 
mathematically. They generally use differential equa-
tions for modeling. Briefly, electrical systems and circuits, 
mechanics, population growth, the spread of disease are a 
few of them. On the other hand, applied mathematics inter-
est physical systems that has no explicit solution. If domain 
of the problem is too large or the problem has a small 
parameter then its numerical solution gets harder. In these 

problems, model restricts the domain to small or sets the 
parameter to zero. As a result, the singular problem arises. 

In this paper, we investigate one of those models, 
singularly perturbation problems (SPP). SPP’s are very 
common problem types in science and engineering. SPP can 
occur in the various science field as solid mechanics, fluid 
dynamics, quantum mechanics, optimal control, chemical 
reactor, reaction-diffusion process [1]. As you can imag-
ine SPP’s can have systems like the system of differential 
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equations. Systems of SPP are used commonly in electro-
chemical analysis and population dynamic models. Some 
actual studies about SPP are as follows; theoretical studies 
on singularly perturbed Kirchhoff problem [2], investiga-
tion of asymptotical convergence on singularly perturbed 
integro-differential equations [3], producing symmet-
ric collocation scheme for linear SPP with two boundary 
conditions [4] and developing the numerical scheme for 
singularly perturbed quasilinear equations [5].

In literature, there are various solving methods for SPP. 
Parameter-uniform numerical method [6], finite element 
method [7,8], dual finite element method [9], finite differ-
ence method [10,11], 6-point interpolatory subdivision 
method [12], second-order adaptive grid method [13] and 
also Sinc-Galerkin method [14]. However, the last reference 
is about singularly perturbation problems not system of SPP. 

Sinc function and Sinc-Galerkin method (SGM) is very 
common in last decades. Frank Stenger was published an 
article about solving boundary value problems in 1979 [15], 
after this main article sinc functions became popular for 
solving boundary value problems (BVP) numerically. SGM 
is very effective way for solving linear, non-linear, ODE and 
PDE. Researchers can find articles which uses Sinc-Galerkin 
method for linear singular BVP [16], nonlinear BVP [17], 
hyperbolic PDE [18], parabolic PDE [19], fractional [20] 
equations. Also can be found the solution of Troesch [21], 
Euler-Bernoulli [22], Bratu [23] and Schrödinger [24] 
equations as phenomena. Besides the citations given, there 
are also up-to-date studies on SGM; solution of fourth-or-
der partial integro-differential equation [25], solution of 
fractional convection-diffusion equation [26], mediated 
bioelectrocatalysis process [27] and SGM approach for 
thermal analysis of moving porous fin subject to nanoliquid 

flow [28]. Considering the citations given, there are quite 
a lot paper about Sinc-Galerkin Method. Despite all this 
research, the lack of an article about solution of singularly 
perturbed reaction-diffusion problems with SGM is the 
main motivation for this article.

In this paper, solution of the system of singular perturbed 
reaction-diffusion problems were investigated. Hereby also, 
the solution of linear and nonlinear system of differential 
equations with Sinc-Galerkin Method were obtained.

The systems have type which are investigated are 
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with boundary conditions as u1(a) = u1(b) = u2(a) = 
u1(b) = 0 where a < b < 0. Thus, problem can be described as 
System of Singular Perturbed Problems with Dirichlet Type 
Boundary Conditions.

SINC – BASIS FUNCTION

The function sinc(z) is defined [15] on  complex plane 
which z ∈  by

	 sinc z
sin z

z
z

z
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0

0 0
	  (2)

for h > 0 and k = 0, 1, 2… translated sinc functions 
with evenly spaced nodes are given by [15]

Figure 1. The basis function S(k,h)(x) with h = π/4 [16].
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The Whittaker Cardinal Function is defined for any 
h > 0 by [15];
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the function converges also. Because of the examination 
onto the interval (0, 1) in this article, conformal mapping 
function was selected as 
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�ln x
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. 	  (5)

Interval of problem can be different from (0,1). In this 
situation, conformal mapping can be obtained as shown in 
Table 1 [29]. Also evenly, space nodes are denoted by

	 x x e
ek
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kh� �
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1
( ) . 	  (6)

This conformal mapping ϕ(x) carries domain DE onto 
infinite strip DS. Here DE and DS defined as (7) and show in 
Figure 2.
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Definition 2.1 [14] Let DE be a simply connected domain 
in the complex plane and let ∂DE be boundaries. Let a,b be 
these boundary points and ϕ(x) be a conformal mapping 
from DE onto DS such that ϕ(a) = -∞ and ϕ(b) = ∞. If the 
inverse map of ϕ(x) is denoted by ψ(x), define 
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Definition 2.2 [14] Let B(DE) be the class of function F 
that is analytic in DE and satisfy 
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Table 1. Conformal mapping and nodes for subintervals of  
 [16]

Interval ϕ(x) zk

a b ln z a
b z
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0 ∞ ln(sinh(z)) ( )e ekh kh+ +2 1

−∞ ∞ z kh
−∞ ∞ sinh-1(z) kh

Figure 2. Conformal mapping ϕ(x) from eye-shaped domain DE onto strip domain DS [16].
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Theorem 2.1 [14] Let Γ be (0,1), F ∈ B(DE), then for 
h > 0 sufficiently small 
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where 
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Proof of Theorem 2.1 can be found in [15].
Theorem 2.2 [14] If there exists positive constants α, β 

and C such that 
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then the error bound for quadrature rule (11) is given by

F z dz h
F z

z
C e e Ij

jj

Nh Nh

F� � �
�

� �
�

�
�

�

�
� �� �

���

� � �

�

( )
( )

.
� 
 �


 �

	 (14)

The infinite sum (11) is truncated with (13) to obtain (14).

Making selections h d
N

�
�
�

 and N N� �[[ ]]�
�

1  where 

[[.]] is an integer part of thestatement and N is the integer 
value which specifies the grid size and lastly 
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Theorem 2.1 and 2.2 were used to approximating the 
integrals that arise in the formulation of discrete systems 
corresponding to the second order system of singular per-
turbed boundary value problem.

Theorem 2.3 [14] Let ϕ be a conformal one-to-one map 
of simply connected domain DE onto DS. Then 
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Proof of Theorem (2.2) and Theorem (2.3) can be found 
in [29].

CONVERGENCE ANALYSIS

Consider the problem in type (1) with Dirichlet 
Boundary Conditions u1(a) = u1(b) = u2(a) = u2(b) = 0 
where a < x < b also where Pi, Ri, Qi and Ti for i = 0,1,2 are 
analytic on DE. Sinc approximation was considered by the 
formula of Whittaker
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The unknown coefficients in equation (19) are deter-
mined by orthogonalizing the residual with respect to 
the sinc basis functions. The Galerkin method enables to 
determine the ck and dk coefficients by solving the system 
of equations
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Let f(x) and g(x) be arbitrary functions on DE. The inner 
product of these two function is defined as follows: 
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here w(x) is weight function. It’s convenient [15] to take 
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For equation (1) using the notations (16)–(18) and 
definition of inner product and using quadrature rule, the 
followings are obtained
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Here only approximations of Pi was wrote but same for-
mulation can be obtained with changing the function Pi by 
Ri, Qi and Ti.
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Approximation of f1(x) is equation (25) and same for-
mulation can be obtained for f2(x). The choices of h and N is 
same with Theorem (2.2).

These error approximation can be found by using 
Theorem (2.2) and [29]

•	 Let v, w ∈ B(D) for v = f(x) or p(x)w(x) then 
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where L0 is positive constant that depends on v,w and d. 
•	 Let u(p[S(j,h)°ϕ]w)′ ∈ B(D) for 
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where L1 is positive constant that depends on u,p,w, ϕ and d.
•	 Let u(p[S(j,h)°ϕ]w)″ ∈ B(D) for 
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where L2 is positive constant that depends on u,p,w, ϕ and d.
Sinc-Galerkin System with (20) becomes 
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Approximation of Sinc-Galerkin equation is below and 
bounded by error term is CMe-(παdM)1/2;
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In literature many of researches uses Ax = b for obtain-
ing the unknown coefficients. Here we suggest that using 
two times of system with combining unknown coefficients.
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Here sys1 is obtained from top part of system of dif-
ferential equation which has functions Pi, Ri and f1 on the 
other hand sys2 is obtained from bottom part of system 
of differential equation which has functions Qi, Ti and f2. 
Also m = 2N + 1. Suggested solution is combining these 
two systems.

(31)
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with vars = [c-N … c0 … cN, d-N … d0 … dN]T
1x2m.

So if we use Ax = b equation, here formulation turns 

	 [sys3]2mx1.X = [vars]2mx1. 	 (35)

We can obtain coefficients c and d. The coefficients 
will used in Whittaker’s Cardinal Function for obtaining 
approximate solution of u1(x) and u2(x) which defined in 
equation (19).

NUMERICAL RESULTS

In this chapter of paper, system of SPPs are examined. 
The equation (35) was solved via Maple.

Example 1
Consider the singularly perturbed system of coupled 

reaction-diffusion two-point BVPs [30]:
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u u
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0

( ) ( ) ( )
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( ) (11 1 002 1) ( ) ( )
.

� � �

�

�
�

�
� u u

	  

(36)

Table 2 shows absolute error for N = 32 and ε = 10-4. Also 
Figure 3 shows exact and approximate graphs of functions 

with same values. Figure 4 shows error between exact and 
SGM solution for Example 1 (36). Table 3 shows absolute 
error of SGM and absolute error of asymptotic initial value 
method in [30] for Example 1 (36).

Example 2
Consider the constant coefficient problem [11]

	

� ��� � � � � � � � �
� ��� � � � � � � � �
� � �

�
�
u x u x u x
u x u x u x

u u

1 1 2

2 1 2

1 1

4 2 1
3 2

0 1�� � � � � � � � �

�

�
�

�
� u u2 10 1 0

.

	

 (37)

In paper [11], there is a table that shows the maximum 
error of their approximation. They noted the maximum 

Figure 3. Exact and Approximate solutions of u1(x) and u2(x) for Example 1 (36) and N = 32 and ε = 10-4.

Table 2. Numerical results of u1(x) for Example 1 (36) (N = 
32 and ε = 10-4)

x Exact  
Solution

Approximate  
Solution

Absolute  
Error

0.1 0.699999399 0.699999975 5.76163E-07
0.11 0.699999854 0.700003458 3.604E-06
0.12 0.699999965 0.700004223 4.25848E-06
0.13 0.699999991 0.700003424 3.43301E-06
0.14 0.699999998 0.700002049 2.05138E-06
0.15 0.7 0.700000736 7.36064E-07
0.16 0.7 0.699999829 1.70418E-07
0.17 0.7 0.699999331 6.6936E-07
0.18 0.7 0.699999224 7.75543E-07
0.19 0.7 0.699999364 6.3551E-07
0.2 0.7 0.699999619 3.81052E-07
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Figure 7 shows that the approximate plots of u1(x) and  
u2(x) for N = 32 and ε = 10-4.

Figure 8 shows that maximum error of u1(x) and u2(x) is 
almost 10-5. For getting significant results we will compare 
with paper [30]. Table 5 shows this comparison.

Figure 4. Error between exact solution and approximate solution for Example 1 (36) N = 32 and ε = 10-4.

error as 0.175908. Figure 5 shows that the graph of exact 
solution and SGM approximation. Figure 6 shows that the 
maximum error of the Sinc-Galerkin Method for u1(x) is 
around 0.0026 also as seen in Table 4. This means that Sinc-
Galerkin Approximation gives a better result for ε = 2-22 
according to [11].

Example 3
Consider the constant coefficient problem [30]:

	

� ��� � � � � � � � �
� ��� � � � � � � � �
� � �

�
�
u x u x u x
u x u x u x

u u

1 1 2

2 1 2

1 1

4 1 2
3 3

0 1�� � � � � � � � �

�

�
�

�
� u u2 10 1 0

.

	  

(38)

Figure 5. Exact solutions and SGM Approximations for 
Example 2 (37) ε = 2-22 N = 64. 

Table 3. Comparison of absolute error of u1(x) between 
SGM and [30]

x Absolute Error  
of SGM

Absolute  
Error of [30] 

√ε 3,17346E-05 1,82E-02
2√ε 5,8823E-06 6,36E-03
3√ε 2,79308E-05 1,75E-03
4√ε 1,76096E-05 4,48E-04
5√ε 1,93274E-05 1,11E-04
6√ε 1,2414E-07 2,73E-05
7√ε 1,12516E-05 6,68E-06
8√ε 1,06398E-05 1,64E-06
9√ε 4,88453E-06 4,07E-07
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CONCLUSION

In this paper linear systems of singularly perturbed 
problems are examined. The main purpose is to obtain 
an approximate solution with Sinc-Galerkin Method. The 
absolute error of method in Example 1 (36) was calculated 
approximately as 10-7. In Example 2 (37) was calculated 
approximately as 10-3 and in Example 3 (38) was calcu-
lated approximately as 10-6. Considering the low error rate 
and other studies in the literature, it can be said that the 
method works properly. Since there is no article about Sinc-
Galerkin Method related to SPP’s, this paper completes a Figure 7. Example 3 (38) u1(x) and u2(x) for N = 32 and ε = 10-4.

Figure 6. Error between exact solution and SGM Approximation for u1(x) of Example 2 (37).

Table 4. Numerical Solution of u1(x) for Example 2 (37)  
N = 64 and ε = 2-22

x Exact  
Solution

Approximate 
Solution

Absolute  
Error

0,1 -0,99999 -0,998516927 0,001473073
0,11 -0,999983895 -0,998467043 0,001516852
0,12 -0,999975117 -0,998191159 0,001783958
0,13 -0,999962871 -0,997872476 0,002090394
0,14 -0,999946218 -0,997661471 0,002284747
0,15 -0,999924063 -0,997621168 0,002302895
0,16 -0,999895142 -0,997731802 0,002163341
0,17 -0,999858014 -0,997923498 0,001934516
0,18 -0,999811043 -0,99811289 0,001698154
0,19 -0,99975239 -0,998230415 0,001521975
0,2 -0,99968 -0,998234665 0,001445335

Table 5. Comparison of absolute error of u1(x) for Example 
3 (38) between SGM and [30]

x Absolute Error of SGM Absolute Error of [30]

√ε 4.288741E-05 1.347269E-02
2√ε 7.821914E-06 5.098768E-03
3√ε 3.963461E-05 1.486357E-03
4√ε 2.540238E-05 3.947539E-04
5√ε 2.829406E-05 1.004906E-04
6√ε 1.414177E-07 2.504268E-05
7√ε 1.686965E-05 6.171060E-06
8√ε 1.618753E-05 1.511495E-06
9√ε 7.555538E-06 3.689832E-07
1 - 9√ε 4.289042E-05 3.689988E-07
1 - 8√ε 7.823715E-06 1.511527E-06
1 - 7√ε 3.963481E-05 6.171126E-06
1 - 6√ε 2.540091E-05 2.504255E-05
1 - 5√ε 2.829542E-05 1.004889E-04
1 - 4√ε 1.416162E-07 3.947403E-04
1 - 3√ε 1.687000E-05 1.486426E-03
1 - 2√ε 1.618802E-05 5.098954E-03
1 - √ε 7.556071E-06 1.347306E-02



Sigma J Eng Nat Sci, Vol. 39, No. 2, pp. 204-213, Vol. 39, No. 2, pp. 203-212, June, 2021 211

previously untouched area in literature. When compared 
the effectiveness of Sinc-Galerkin Method with parameter 
robust method [11] or asymptotical initial value method 
[30], it’s clearly seen that SGM gives better results. In addi-
tion to this paper, systems of singularly perturbed nonlin-
ear problems can be investigated as different research.
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