On The Bounds of Norms of Circulant Cauchy-Toeplitz Matrices

Süleyman SOLAK1 & Durmuş BOZKURT 2

Abstract: In this study, we have found bounds for the spectral and ℓ_p norm of circulant Cauchy-Toeplitz matrices in the form

$$T_n = \left[1/(g + (i - j)h)\right]_{i,j=1}^n \equiv \left(\left[1/(g + kh)\right]_{i,j=1}^n\right)$$

where k = 0,1,..., n-1.

Keywords: Circulant matrix, Cauchy-Toeplitz matrix, norm.

Circulant Cauchy-Toeplitz Matrislerin Normlarının Sınırları Üzerine

Özet: Bu çalışmada $T_n = [1/(g+(i-j)h)]_{i,j=1}^n \equiv ([1/(g+kh)]_{i,j=1}^n)$ formunda tanımladığımız circulant Cauchy-Toeplitz matrislerinin spektral ve ℓ_p normları için sınırlar bulduk.

Anahtar Kelimeler: Circulant matris, Cauchy-Toeplitz matris, norm.

1. Introduction

Let $A_n = [1/(x_i - y_j)]_{i,j=1}^n$ be a Cauchy matrix and $T_n = [t_{j-i}]_{i,j=1}^n$ be a Toeplitz matrix. In generally Cauchy-Toeplitz matrices are being defined as

$$T_{n} = \left[\frac{1}{g + (j - i)h}\right]_{i,j=1}^{n}$$
(1.1)

Department of Mathematics, Education Faculty of Selçuk University, 42099, Konya-Turkey; e-mail:ssolak@selcuk.edu.tr Department of Mathematics, Art and Science Faculty of Selçuk University, 42031, Konya-Turkey; e-mail:dbozkurt@selcuk.edu.tr

where $h \neq 0$, g and h are some numbers and quotient g/h is not integer.

Closely related to Toeplitz matrices are the so-called circulant matrices. An $(n \times n)$ matrix C is called a circulant matrix if it is of the form

$$C_n = \begin{bmatrix} c_0 & c_1 & c_2 & \dots & c_{n-2} & c_{n-1} \\ c_{n-1} & c_0 & c_1 & \dots & c_{n-3} & c_{n-2} \\ \dots & \dots & \dots & \dots & \dots \\ c_2 & c_3 & c_4 & \dots & c_0 & c_1 \\ c_1 & c_2 & c_3 & \dots & c_{n-1} & c_0 \end{bmatrix}.$$

For each i,j=1,...,n and k=0,1,2,...,n-1, all the elements (i,j) such that $j-i\equiv k\pmod n$ have the same value c_k ; these elements form the so-called kth stripe of C. Obviously, a circulant matrix is determined by its first row (or column). It is clear that every circulant matrix is a Toeplitz matrix, but the converse is not necessarily true [2].

If we replace $j-i \equiv k \pmod{n}$ by (j-i) in (1.1) then the matrix T_n as follows

$$T_n = \left[\frac{1}{g + kh}\right]_{n \times n}, \ k=0,1,2,..,n-1$$
 (1.2)

i.e.

We called this matrix as circulant Cauchy-Toeplitz matrix.

Let A be any $n \times n$ matrix. The ℓ_p norms of the matrix A are defined as

$$||A||_p = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^p\right)^{1/p} \quad (1 \le p < \infty).$$
 (1.3)

If $p=\infty$, then

$$||A||_{\infty} = \lim_{n \to \infty} ||A||_{p} = \max_{i,j} |a_{ij}|.$$

The well known Euclidean norm of matrix A is

$$||A||_{E} = \left[\sum_{i,j=1}^{n} |\alpha_{ij}|^{2}\right]^{1/2}.$$
(1.4)

and also the spectral norm of matrix A is

$$||A||_2 = \sqrt{\max_{1 \le i \le n} \lambda_i} \tag{1.5}$$

where λ_i is eigenvalue of A^HA and A^H is conjugate transpose of matrix A. Between $\|A\|_E$ and $\|A\|_2$ norms is valid as follows [5]:

$$\frac{1}{\sqrt{n}} \|A\|_{E} \le \|A\|_{2} \,. \tag{1.6}$$

A function Ψ is called as psi (or digamma) function if

$$\Psi(x) = \frac{d}{dx} \{ \log [\Gamma(x)] \}$$

where

$$\Gamma(x) = \int_{0}^{\infty} e^{-t} t^{x-1} dt.$$

It is called as Polygamma function the n th derivatives of psi function [4] i.e.

$$\Psi(n,x) = \frac{d}{dx^n} Psi(x)$$

$$= \frac{d}{dx^n} \left[\frac{d}{dx} \ln \left[\Gamma(x) \right] \right]$$

Where if n=0 then $\Psi(0,x) = Psi(x) = \frac{d}{dx} \{ \ln[\Gamma(x)] \}$. On the other hand if a>0 and b is any

number and n is positive integer, then

$$\lim_{n\to\infty} \Psi(a,n+b) = 0. \tag{1.7}$$

In this study, we have found bounds for norms of circulant Cauchy-Toeplitz matrices. Where \mathbb{Z}^+ and \mathbb{R}^+ will represent the sets of positive integers and positive real numbers, respectively.

2. Norms of Circulant Cauchy-Toeplitz Matrices

Theorem 2.1. Let the matrix T_n be as in (1.2). Then

$$n^{-1/p} \|T_n\|_p \le \left\{ \frac{(-1)^p}{(p-1)! h^p} \Psi(p-1, g/h) \right\}^{1/p}$$

is valid for the ℓ_p norm of the matrix T_n where $2 \leq p < \infty$ and $g,h \in \mathbb{R}^+$.

Proof. From (1.3) we have

$$\|A\|_{p} = \left[\sum_{i,j=1}^{n} \left|a_{ij}\right|^{p}\right]^{1/p} = \left[\sum_{i=1}^{n} \left(\left|a_{1i}\right|^{p} \left\|e_{i}\right\|^{p} + \left|a_{2i}\right|^{p} \left\|e_{i}\right\|^{p} + \ldots + \left|a_{ni}\right|^{p} \left\|e_{i}\right\|^{p}\right)\right]^{1/p}$$

where $e_i (1 \le i \le n)$ is the basis of \mathbb{R}^n . For the matrix T_n

$$||T_n||_p^p = \sum_{s=1}^n \frac{n}{[g + (s-1)h]^p}.$$
 (2.1)

If we divide by n two hand side of the (2.1) then

$$\frac{1}{n} \|T_n\|_p^p = \sum_{s=1}^n \frac{1}{[g + (s-1)h]^p}.$$

If we evaluate the right handside of this equality, we have

$$\sum_{s=1}^{n} \frac{1}{(g+(s-1)h)^{p}} = \frac{(-1)^{p-1}}{(p-1)!h^{p}} \left[\Psi(p-1, n+g/h) - \Psi(p-1, g/h) \right].$$

Hence from (1.7), we obtain

$$\lim_{n\to\infty} \left\{ \sum_{s=1}^{n} \frac{1}{(g+(s-1)h)^{p}} \right\} = \frac{(-1)^{p}}{(p-1)!h^{p}} \Psi(p-1,g/h).$$

Consequently we can write as follows

$$\frac{1}{n} \|T_n\|_p^p \le \left\{ \frac{(-1)^p}{(p-1)!h^p} \Psi(p-1, g/h) \right\}$$
 (2.2)

If we take 1/p th power of inequality (2.2) then the proof is completed.

Theorem 2.2. Let the matrix T_n be as in (1.2). then

$$\sqrt{\frac{1}{h^2}\Psi(1,g/h)} \leq ||T_n||_2$$

is valid for the spectral norm of the matrix T_n where $h \in \mathbb{Z}^+$, $g \in \mathbb{R}^+ \setminus \mathbb{Z}^+$, h > g, n > 1.

Proof. From (1.4) we have

$$||T_n||_E^2 = \left\{ \sum_{s=1}^n \frac{n}{(g+(s-1)h)^2} \right\}.$$
 (2.3)

If we divide by n two hand side of the (2.3) then

$$\frac{1}{n} \|T_n\|_E^2 = \left\{ \sum_{s=1}^n \frac{1}{(g + (s-1)h)^2} \right\}.$$

From the properties of polygamma functions the right handside of this equality is wrote as the following:

$$\sum_{s=1}^{n} \frac{1}{(g+(s-1)h)^{2}} = \frac{1}{h^{2}} \left[\Psi(1,g/h) - \Psi(1,n+g/h) \right]$$

Hence from (1.7),

$$\lim_{n\to\infty} \left\{ \sum_{s=1}^{n} \frac{1}{(g+(s-1)h)^{2}} \right\} = \frac{1}{h^{2}} \Psi(1, g/h).$$

Hence

$$\frac{1}{n} \|T_n\|_E^2 = \left\{ \frac{1}{h^2} \Psi(1, g/h) \right\}$$

and

On the Bounds of Norms of Circulant Cauchy-Toeplitz Matrices

$$\frac{1}{\sqrt{n}} \|T_n\|_E = \sqrt{\frac{1}{h^2} \Psi(1, g/h)}.$$

Thus from (1.6) we have

$$\sqrt{\frac{1}{h^2} \Psi(1, g/h)} \le \|T_n\|_2. \tag{2.4}$$

3. Numerical Results

We shall give numerical values, graphs and functions for theorem 2.1. and theorem 2.2.

Example 3.1. Let g, h and p be 1,2,2 respectively. Using these values in theorem 2.1, we get the following values in table 3.1.

n	$n^{-1/p} \ T_n\ _p$	$\left[\frac{(-1)^p \Psi(p-1,g/h)}{(p-1)!h^p} \right]^{1/p}$	n	$n^{-1/p} \ T_n\ _p$	$\left[\frac{(-1)^p \Psi(p-1,g/h)}{(p-1)!h^p} \right]^{1/p}$
1	1	1.110720735	20	1.105080609	1.110720735
2	1.054092553	II II	30	1.106963408	"
3	1.072898463	ii .	40	1.107903821	U
4	1.082367440		50	1.108467733	11
5	1.088055584	"	60	1.108843532	11
6	1.091846792	"	70	1.109111889	11
7	1.094553140	11	80	1.109313116	
8	1.096581515	11	90	1.109469604	"
9	1.098158107	"	100	1.109594778	=
10	1.099418624		150	1.109970220	11

Table 3.1.

The graph which corresponds to n and $n^{-1/p} \|T_n\|_p$ values in the table 3.1. is as follows.

Where horizontal axis and vertical axis denote n and $n^{-1/p} \|T_n\|_p$, respectively. The function corresponding to the above graph is as follows.

$$f(n) = \frac{ab + cn^d}{b + n^d}$$

where a=-0.046957818, b=0.10554744, c=1.1105646 and d=1.0387502. If we take limit as $n \to \infty$, we get

$$\lim_{n \to \infty} f(n) = c = 1.1105646.$$

Consequently, we can write $n^{-1/p} \|T_n\|_p \leq \lim_{n \to \infty} f(n) = c$.

Example 3.2. Let *g* and *h* be 0.1 and 1 respectively. Using these values in theorem 2.2, we get the following values in table 3.2.

n	$\sqrt{\frac{\Psi(1,g/h)}{h^2}}$	$ T_n _2$	n	$\sqrt{\frac{\Psi(1,g/h)}{h^2}}$	$ T_n _2$
2	10.07140999	10.90909091	20	10.07140999	13.39939292
3	"	11.38528139	30	"	13.81157685
4	117	11.38528139	40		14.10261063
5	, - , 2 . III 1 E	11.95176447	50	" .	14.32776271
6	- "	12.14784290	60	11	14.51142225
7	- 11	12.31177733	70		14.66652811
8	"	12.45262240	80	Ш	14.80077561
9	- 11	12.57607919	90	п	14.91911545
10	"	12.68596930	100	"	15.02492131

Table 3.2.

The graph which corresponds to n and $n^{-1/p} \|T_n\|_p$ values in the table 3.2. is as follows.

On the Bounds of Norms of Circulant Cauchy-Toeplitz Matrices

Where horizontal axis and vertical axis denote n and $\|T_n\|_2$, respectively. The function corresponding to the above graph is as follows.

$$f(n) = \frac{ab + cn^d}{b + n^d}$$

where a=3.6122232, b=1.4853264, c=20.019447 and d=0.26394827. If we take limit as $n \to \infty$, we get

$$\lim_{n \to \infty} f(n) = c = 20.019447.$$

Consequently, we can write $\left\|T_n\right\|_2 \leq \lim_{n \to \infty} f(n) = c$.

References

- [1] D.Bozkurt, On the ℓ_p Norms of Cauchy-Toeplitz Matrices, Linear and Multilinear Algebra, Vol.44, p.341-346(1998).
- [2] R. Van Dal, G. Tijssen, Z. Tuza, J. A.A. van der veen,C. Zamfirescu, T. Zamfirescu, Hamiltonian properties of Toeplitz graphs, Discrete Mathematics 159(1996)69-81.
- [3] S.V. Parter, On the Distribution of the Singular Values of Toeplitz Matrices, Linear Algebra and Its Applications 80:115-130(1986).
- [4] R. Moenck, On computing closed forms for summations, Proc. MACSYMA user's conf. pp.225-236 (1977).
- [5] G. Zielke, Some remarks on Matrix norms, Condition numbers and Error Estimates for Linear Equations, Linear Algebra and Its Applications 110:29-41(1988).