Lower Bounds For Perron Root Of Positive Matrices

Ahmet Ali ÖÇAL ${ }^{1}$, Dursun TAŞCI ${ }^{2}$

Abstract

In this paper we define "greatest common divisor (or gcd)" symmetrization of a positive matrix and using this we obtain some lower bounds for Perron root of positive matrices.

Key Words: Positive matrix, Perron root

Pozitif Matrislerin Perron Kökleri İçin Alt Sınırlar

Özet: Bu çalışmada, pozitif matrisin en büyük ortak bölen simetrizasyonu tanımlandı ve bu simetrizasyon kullanılarak, pozitif matrislerin Perron kökleri için alt sınırlar elde edildi.
Anahtar Kelimeler: Pozitif matris, Perron kökü

Introduction

Definition 1.1. Let $A=\left(a_{i j}\right) \in M_{n}$. We say that $A \geq 0$ (A is nonnegative) if all its entries $a_{i j}$ are real and nonnegative, where M_{n} denotes $n \times n$ matrices. We say that $A>0$ (A is positive) if all its entries a_{ij} are real and positive.

Definition 1.2. Let $A, B \in M_{n}$. We say that $A \geq B$ if $A-B \geq 0$.

Definition 1.3. The spectral radius $\rho(A)$ of a matrix $A=\left(a_{i j}\right) \in M_{n}$ is

$$
\rho(A) \equiv\{|\lambda|: \lambda \text { is an eigenvalue of } A\}
$$

Definition 1.4. Let A be square nonnegative matrix. Then a nonnegative eigenvalue
$r(A)$ which is not less than the absolute value of any eigenvalue of A is called Perron root.

[^0]Let A be a (nonsymmetric) nonnegative matrix and let

$$
\varepsilon=\frac{e^{\top} S(A) e}{n}
$$

where $S(A)$ denotes the geometric symmetrization of $A($ see $[8])$ as $S(A)=\left(s_{i j}\right)$, i.e., $\mathrm{s}_{\mathrm{ij}}=\sqrt{\mathrm{a}_{\mathrm{ij}} \mathrm{a}_{\mathrm{ji}}}$
and $\mathrm{e}^{\top}=(1,1, \mathrm{~K}, 1)$. Kolotilina (see [5]) showed that

$$
\varepsilon \leq r(A)
$$

where $r(A)$ is the Perron root of A.

Let A be a nonnegative $n \times n$ matrix and let

$$
\gamma(\mathrm{A})=\min _{1 \leq \mathrm{i} \leq \mathrm{n}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}} .
$$

Yamamoto (see [9]) showed that

$$
\gamma(\mathrm{A}) \leq \mathrm{r}(\mathrm{~A}) .
$$

Let $A=\left(a_{i j}\right)$ be a (nonsymmetric) positive $n \times n$ matrix, denoted $A>0$, and $a_{i j} \in Z^{+}$where Z^{+}
denotes positive integers. We define "greatest common divisor (or gcd)" symmetrization of A, as
$[A]=\left(d_{i j}\right)$, i.e., $d_{i j}=\operatorname{gcd}\left(a_{i j}, a_{j i}\right)$. Clearly, if A is a positive symmetric matrix, then [A] = A The purpose of this paper is to obtain the following lower bound for the Perron root of a positive
matrix:

$$
r([A]) \leq r(A)
$$

Result

Lemma 2.1. [3]. Let $A, B \in M_{n}$. If $0 \leq A \leq B$, then $\rho(A) \leq \rho(B)$, where $\rho(A)$ denotes spectral radius of A and $\rho(B)$ denotes spectral radius of B.

Lemma 2.2. Let $A=\left(a_{i j}\right)$ be a positive $n \times n$ matrix and let $a_{i j} \in Z^{+}$, then

$$
\begin{equation*}
r([A]) \leq r(A) \tag{2.1}
\end{equation*}
$$

where $r([A])$ denotes Perron root of " $g c d$ " symmetrization matrix of A and $r(A)$ denotes Perron root of A.

Proof. Clearly we have for all $\mathrm{i}, \mathrm{j}(\mathrm{i}, \mathrm{j}=1,2, \ldots, \mathrm{n})$

$$
\begin{equation*}
\operatorname{gcd}\left(a_{i j}, a_{j i}\right) \leq a_{i j} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{gcd}\left(a_{i j}, a_{j i}\right) \leq a_{j i} \tag{2.3}
\end{equation*}
$$

Considering (2.2), (2.3) and Lemma 2.1 we write

$$
r([A]) \leq r(A)
$$

and

$$
\mathrm{r}([\mathrm{~A}]) \leq \mathrm{r}\left(\mathrm{~A}^{\top}\right)
$$

respectively, where A^{\top} denotes transpose of A.

Theorem 2.1. Let $A=\left(a_{i j}\right)$ be a positive $n \times n$ matrix, $a_{i j} \in Z^{+}$and let

$$
\mu_{\mathrm{k}}=\left(\mathrm{r}\left[\mathrm{~A}^{2^{\mathrm{k}}}\right]\right)^{2^{-k}} .
$$

Then

$$
r(A) \geq \mu_{k}
$$

Proof. We note that from (2.1) it follows that

$$
r\left(A^{2^{k}}\right)=r(A)^{2^{k}} \geq r\left[A^{2^{k}}\right]
$$

which implies

$$
\mathrm{r}(\mathrm{~A}) \geq \mu_{\mathrm{k}}
$$

Thus the therom is proved.

Lemma 2.3. Let $A=\left(a_{i j}\right)$ be a positive $n \times n$ matrix and let $a_{i j} \in Z^{+}$. Then

$$
\begin{equation*}
\frac{e^{\top}[A] e}{e^{\top} e} \leq \frac{e^{\top} A e}{e^{\top} e} \tag{2.4}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{e^{\top}[A] e}{e^{\top} e} \leq \frac{e^{\top} A^{\top} e}{e^{\top} e} \tag{2.5}
\end{equation*}
$$

where $\mathrm{e}^{\top}=(1,1, \ldots, 1)$.

Proof. To prove (2.4) and (2.5) it suffices that

$$
e^{\top}[A] e \leq e^{\top} A e
$$

or

$$
e^{\top}[A] e \leq e^{\top} A^{\top} e .
$$

Indeed we have

$$
e^{\top}[A] e=\sum_{i, j=1}^{n} \operatorname{gcd}\left(a_{i j}, a_{j i}\right) \leq \sum_{i, j=1}^{n} a_{i j}=e^{\top} A e
$$

or

$$
e^{\top}[A] e=\sum_{i, j=1}^{n} \operatorname{gcd}\left(a_{i j}, a_{j i}\right) \leq \sum_{i, j=1}^{n} a_{j i}=e^{\top} A^{\top} e .
$$

Thus the proof is complete.

Theorem 2.2. Let $A=\left(a_{i j}\right)$ be a positive $n \times n$ matrix and let $a_{i j} \in Z^{+}$. Then

$$
r([\mathrm{~A}]) \leq \mathrm{r}(\mathrm{~S}(\mathrm{~A})) \leq \mathrm{r}(\mathrm{M}(\mathrm{~A}))
$$

where $S(A)$ denotes the "geometric" symmetrization and $M(A)$ denotes the "arithmetic"
symmetrization of A (see [4]) as $M(A)=\left(m_{i j}\right)$, i.e.,

$$
\mathrm{m}_{\mathrm{ij}}=\frac{\mathrm{a}_{\mathrm{ij}}+\mathrm{a}_{\mathrm{ji}}}{2} \quad 1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n} .
$$

Proof. Considering Lemma 2.1 and

$$
\operatorname{gcd}\left(a_{i j}, a_{j i}\right) \leq \sqrt{a_{i j} a_{j i}} \leq \frac{a_{i j}+a_{j i}}{2}
$$

the proof is immediately seen.

We end the paper with an example (see [4]). Consider the following matrix:

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 3 \\
2 & 3 & 5
\end{array}\right]
$$

The Perron root of A is $r(A)=7.531$. On the other hand since

$$
[A]=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 1 & 3 \\
2 & 3 & 5
\end{array}\right]
$$

the Perron root of $[A]$ is $r[A]=7.387$.

Kolotilina (see [5]) showed ε is a better approximation to $r(A)=7.531$ than the other lower bounds from the literature, such as those by Deutsch (see [1]), Deutsch and Wielandt (see [2]), and Szule (see $[6,7]$). The bound discussed in this paper yield $\gamma(A)=4, \varepsilon=6.609$, $r[A]=7.387$. All values were rounded to four significant figures. Thus the lower bound $r[A]$ provides a better approximation the Perron root than the lower bounds provided by other authors.

References

1. Deutsch, E., Bounds for the Perron Root of a Nonnegative Irreducible Partitioned Matrix, Pasific J. Math. 92: 49-56 (1981).
2. Deutsch, E. And Wielandt, H., Nested Bound for Perron Root of a Nonnegative Matrix, Linear Igebra and its Appl., 52/53: 235-251 (1983).
3. Horn, R.A. and Johnson, C.R., Matrix Analysis, Cambridge University Press., 1990.
4. Kirkland, S. and Taşcı, D., Sequence of Upper Bounds for The Perron Root of a Nonnegative Matrix, Linear Algebra and its Appl., 273: 23-28 (1998).
5. Kolotilina, L.Y., Lower Bounds for the Perron Root of a Nonnegative Matrix, Linear Algebra and its Appl., to appear.
6. Szule, T., A Lower Bound for the Perron Root of a Nonnegative Matrix, Linear Algebra and its Appl., 101: 181-186 (1988).
7. Szule. T., A Lower Bound for the Perron Root of a Nonnegative Matrix II , Linear Algebra and its Appl., 112: 19-27 (1989).
8. Szyld, D.B., A Sequence of Lower Bounds for the Spectral Radius of Nonnegative Matrices, Linear Algebra and its Appl., 174: 239-242 (1992).
9. Yamamoto, T., A Computational Method for the Dominant Root of Lower Nonnegative Irreducible Matrix, Numer Math., 8: 324-333 (1966).

[^0]: ${ }^{1}$ Department of Mathematics, University of Gazi, [42500] Ankara, TURKEY
 ${ }^{2}$ Department of Mathematics, University of Gazi, [42500] Ankara, TURKEY

