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Rotational Hypersurfaces in Euclidean 4-space with Density  
 

Highlights 

 Rotational hypersurfaces in Euclidean 4-space with density have considered. 

 Weighted minimal and weighted flat rotational hypersurfaces in Euclidean 4-space with density have 

obtained. 

 Some examples for these hypersurfaces have constructed. 

 

Graphical Abstract 

In the present study, Euclidean 4-space with a positive density function 𝑒𝑥
2+𝑦2+𝑧2+𝑡2 have studied. In this context, the 

weighted mean and weighted Gaussian curvature functions of a rotational hypersurface in 4-dimensional Euclidean 

space with density have obtained. 

 

Figure. Some projections of the rotational hypersurface. 

 

Aim 

The aim of this study is to study the rotational hypersurface in 4-dimensional Euclidean space with density. 

 

Design & Methodology 

The theoretical methodology of mathematics has used to obtain the results. 

 

Originality 

All obtained results in this study are original. 

 

Findings 

The weighted mean and weighted Gaussian curvature functions of a rotational hypersurface in 4-dimensional 

Euclidean space with density 𝑒𝑥
2+𝑦2+𝑧2+𝑡2  have obtained and some examples for these hypersurfaces have given. 

 

Conclusion  

In this paper, we consider the rotational hypersurfaces in Euclidean 4-space with density 𝑒𝑥
2+𝑦2+𝑧2+𝑡2  and obtain 

the weighted minimal and weighted flat rotational hypersurfaces in this space. We think that, the results which are 

obtained in this study are important for differential geometers who are dealing with weighted surfaces. 

 

 

 

 

Declaration of Ethical Standards 

The author(s) of this article declare that the materials and methods used in this study do not require ethical committee 

permission and/or legal-special permission. 



Politeknik Dergisi, 2022; 25(1) : 107-114  Journal of Polytechnic, 2022; 25(1): 107-114 

     

107 

Yoğunluklu Öklidyen 4-Uzayında Dönel 

Hiperyüzeyler 
Araştırma Makalesi / Research Article 

Mustafa ALTIN*  

Technical Sciences Vocational School, Bingol University, Bingol, Turkey 
(Geliş/Received : 20.05.2020; Kabul/Accepted : 01.09.2020 ; Erken Görünüm/Early View : 27.10.2020) 

 ÖZ 

Bu çalışmada, pozitif yoğunluk fonksiyonu 𝑒𝑥
2+𝑦2+𝑧2+𝑡2 olan 4-boyutlu Öklid uzayı ele alınmıştır. İlk olarak, yoğunluklu 4-

boyutlu Öklid uzayında bir dönel hiperyüzeyin ağırlıklı ortalama ve ağırlıklı Gauss eğrilik fonksiyonları elde edilmiştir. İkinci 

mertebeden lineer olmayan adi diferansiyel denklem olarak elde edilen bu fonksiyonların çözülmesiyle dönel hiperyüzeyler inşa 

edilmiştir. Ayrıca, yoğunluklu 𝐸4 uzayında, ağırlıklı Gauss eğriliği ve ağırlıklı ortalama eğriliği yardımıyla dönel hiperyüzey 

örnekleri verilmiştir. 

Anahtar Kelimeler: Yoğunluklu 4-boyutlu Öklidyen uzay, ağırlıklı ortalama eğrilik, ağırlıklı Gaussian eğriliği, dönel 

hiperyüzeyleri. 

Rotational Hypersurfaces in Euclidean 4-Space with 

Density 

ABSTRACT 

In this paper, the Euclidean 4-space with a positive density function 𝑒𝑥
2+𝑦2+𝑧2+𝑡2 is studied. Firstly, the weighted 

mean and weighted Gaussian curvature functions of a rotational hypersurface in 4-dimensional Euclidean space with 

density are obtained. The rotational hypersurfaces are constructed by solving these obtained functions which are 

second-order non-linear ordinary differential equations. Besides, the examples of rotational hypersurfaces are given 

with the aid of the weighted Gaussian and weighted mean curvatures in 𝐸4 with density. 

Keywords:  Rotational hypersurfaces, Euclidean 4-space with density, weighted mean curvatures, weighted Gaussian 

curvatures. 

1. INTRODUCTION 

Minimal and flat surfaces are the significant study areas 

for mathematicians, engineers, and other scientists. 

The studies focus on the minimal and flat surfaces in 4-

dimensional spaces that can be listed as follows: Moore 

has studied rotational surfaces with constant curvature in 

four-dimensional space and some relations have been 

given for them in the 1900s [1,2]. Ganchev and 

Milousheva have examined the Moor’s studies in 

Minkowski 4D-space and some relations have been 

expressed in [7]. Complete hypersurfaces in ℝ4 with 

constant mean curvature and scalar curvature have been 

classified in [3]. In [5,6], the generalized rotational 

surfaces and translation surfaces in 4-D Euclidean 

surfaces have been studied. The curvature properties of 

the surfaces have been investigated and some examples 

for them have given. Besides, it is shown that the 

translation surface is flat if and only if it is a hyperplane 

or a hypercylinder. Moruz and Mounteanu have studied 

Minimal translation hypersurfaces in [8]. The rotational 

surfaces with finite type Gauss map in Euclidean 4-space 

have been investigated in [4]. It is shown that the Gauss 

map is a finite type if and only if the rotational surface is 

a Clifford torus [4]. Dursun and Turgay have studied 

general rotational surfaces in E4 whose meridian curves 

lie in 2D planes. They also have found all minimal 

general rotational surfaces by solving the differential 

equation that characterizes minimal general rotational 

surfaces. Besides, they have determined all pseudo-

umbilical general rotational surfaces in E4 [9]. Kahraman 

and Yaylı have studied Bost invariant surfaces with 

pointwise 1-type Gauss map in E1
4 and they have 

generalized rotational surfaces of pointwise 1-type Gauss 

map in E2
4 [10,11]. Güler and et al. have defined 

helicoidal hypersurface with the Laplace-Beltrami 

operator in four-space [12]. Also, Güler and et al. have 

studied Gauss map and the third Laplace-Beltrami 

operator of the rotational hypersurface in 4-space [13], 

second Laplace-Beltrami operator of the rotational 

hypersurface in 4-space [32] and Cheng-Yau operator 

and Gauss map of the rotational hypersurface in 4-space 

[33].  Yüce has studied Weingarten Map of the 

Hypersurface in Euclidean 4-Space [34]. Since the 

Gaussian curvature and the mean curvature of an n-

dimensional hypersurface are important invariants to 

characterize the hypersurface, many authors have studied 

these notions for different types of hypersurfaces for a 

long time in different spaces, such as Euclidean, 

Minkowski, Galilean, and pseudo-Galilean spaces. 
*Sorumlu Yazar  (Corresponding author)  
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Furthermore, recently, the notion of the weighted 

manifold which is an important topic for geometers and 

physicists has been studied by many scientists. Firstly, 

Gromov has introduced the notion of weighted mean 

curvature (or 𝜑-mean curvature) of an n-dimensional 

hypersurface as  

𝐻𝜑 = 𝐻 −
1

(𝑛−1)

𝑑𝜑

𝑑𝑁
 ,                                                (1.1) 

where 𝜑 is density function, 𝐻 and 𝑁 are respectively the 

mean curvature and the unit normal vector field of the 

hypersurface [14]. A hypersurface is named weighted 

minimal (or φ-minimal) if its weighted mean curvature 

vanishes. 

Also, Corvin and et al. have introduced the notion of 

generalized weighted Gaussian curvature on a manifold 

as 

𝐺𝜙 = 𝐺 −△ 𝜑,                                                       (1.2) 

where △ is the Laplacian operator and 𝐺 is Gaussian 

curvature of the hypersurface. Also, they have given a 

generalization of the Gauss-Bonnet formula for a 2-

dimensional differentiable manifold with density [15]. A 

hypersurface is called weighted flat (or φ-flat) if its 

weighted Gaussian curvature vanishes. 

After these definitions, the differential geometry of the 

curves and hypersurfaces on manifolds with density in 

Euclidean, Minkowski, and Galilean spaces has been 

started to be an important topic for geometers, physicists, 

economists, etc. For instance, in [20, 21, 29], F. Morgan 

and others have studied the manifolds with density, 

provided the generalizations of the theorem of Myers to 

Riemannian manifolds with density and the Perelman’s 

proof of the Poincare conjecture, respectively. 

The classification of constant weighted curvature curves 

in a plane with a log-linear density has been done by Hieu 

in [17]. Furthermore, some results on curves in the plane 

with log-linear density have been given by Nam in [22]. 

In [28], Lopez has studied the minimal surfaces in 

Euclidean 3-space with a log-linear density φ(x, y, z) = 

αx+βy +γz, where α, β, and γ are real numbers not all-

zero. Also, Belarbi and et al. have studied the surfaces in 

𝑅3 with density and they have given some results in a 

Riemannian manifold M with density in [16] and [26]. 

Next, ruled minimal surfaces in 𝑅3with density 𝑒𝑧; 

helicoidal surfaces in 𝑅3 with density 𝑒−𝑥
2−𝑦2  and 

weighted minimal affine translation surfaces in 

Euclidean space with density have been studied in [27, 

23, 24], respectively. Also, some types of surfaces have 

been studied by geometers in other spaces such as 

Minkowski 3-space and Galilean 3-space with density. 

For instance, a helicoidal surface of type 𝐼+ with 

prescribed weighted mean curvature and Gaussian 

curvature in Minkowski 3-space and weighted minimal 

translation surfaces in Minkowski 3-space with density 

𝑒𝑧 have been constructed in [25] and [30], respectively. 

In [31], weighted minimal translation surfaces in the 

Galilean 3-space with log-linear density have been 

classified and in [19], weighted minimal and weighted 

flat surfaces of revolution in Galilean 3-space with 

density 𝑒𝑎𝑥
2+𝑏𝑦2+𝑐𝑧2  have been investigated. Also, Altın 

and his friends have studied ruled surfaces and rotational 

surfaces in different spaces with density, in recent years 

(see [18, 35-38]). 

In the present study, after giving some basic notions 

about hypersurfaces in Euclidean 4-space in the 

Preliminaries section; in the third section, we give the 

solutions of Gaussian curvature and mean curvature of 

rotational hypersurfaces in Euclidean 4-space. Also, we 

give some results and examples of the rotational 

hypersurfaces in this section. 

In the fourth section of this paper, we obtain the weighted 

mean and weighted Gaussian curvatures of a rotational 

hypersurface in 𝐸4 with density. Then, we solve these 

curvature functions which are second-order non-linear 

ordinary differential equations. Furthermore, we give 

some examples of a rotational hypersurface with 

different weighted Gaussian and weighted mean 

curvatures in 𝐸4 with density. 

 

2.PRELIMINARIES 

In this section, some fundamental notions used in the 

following sections will be given. 

Let �⃗⃗� = (𝒙𝟏, 𝒚𝟏, 𝒛𝟏, 𝒕𝟏), �⃗⃗� = (𝒙𝟐, 𝒚𝟐, 𝒛𝟐, 𝒕𝟐) and �⃗� =
(𝒙𝟑, 𝒚𝟑, 𝒛𝟑, 𝒕𝟑) be three vectors in 𝑬𝟒. Then, the inner 

product and vector product of these vectors are given by 

⟨𝑥 , 𝑦 ⟩ = 𝑥1𝑥2 + 𝑦1𝑦2 + 𝑧1𝑧2 + 𝑡1𝑡2                          (2.1) 

 and  

𝑥 × 𝑦 × 𝑧 = 𝑑𝑒𝑡 (

𝑒1 𝑒2 𝑒3 𝑒4
𝑥1 𝑦1 𝑧1 𝑡1
𝑥2 𝑦2 𝑧2 𝑡2
𝑥3 𝑦3 𝑧3 𝑡3

),                     (2.2) 

respectively. If  

𝑋: 𝐸3⟶ 𝐸4 

 (𝑢1, 𝑢2, 𝑢3) ⟶ 𝑋(𝑢1, 𝑢2, 𝑢3)                                      (2.3)                                                   

= (𝑋1(𝑢1, 𝑢2, 𝑢3), 𝑋2(𝑢1, 𝑢2, 𝑢3), 𝑋3(𝑢1, 𝑢2, 𝑢3), 𝑋4(𝑢1, 𝑢2, 𝑢3)) 

is a hypersurface in Euclidean 4-space 𝐸4, then the 

normal vector field, the matrix forms of the first and 

second fundamental forms are  

𝑁 =
𝑋𝑢1×𝑋𝑢2×𝑋𝑢3

‖𝑋𝑢1×𝑋𝑢2×𝑋𝑢3‖
,                                                    (2.4) 

𝑔𝑖𝑗 = [

𝑔11 𝑔12 𝑔13
𝑔21 𝑔22 𝑔23
𝑔31 𝑔32 𝑔33

]                                             (2.5) 

and 

ℎ𝑖𝑗 = [

ℎ11 ℎ12 ℎ13
ℎ21 ℎ22 ℎ23
ℎ31 ℎ32 ℎ33

],                                            (2.6) 

respectively. Here, 𝑔𝑖𝑗 = 〈𝑋𝑢𝑖 , 𝑋𝑢𝑗〉, ℎ𝑖𝑗 = 〈𝑋𝑢𝑖𝑢𝑗 , 𝑁〉, 

𝑋𝑢𝑖 =
𝜕𝑋

𝜕𝑢𝑖
 , 𝑋𝑢𝑖𝑢𝑗 =

𝜕2𝑋

𝜕𝑢𝑖𝑢𝑗
,   {𝑖, 𝑗} ∈ {1,2,3}. 

Also, the shape operator of the hypersurface (2.3) is  

𝑆 = (𝑎𝑖𝑗) = (𝑔𝑖𝑗)
−1
. (ℎ𝑖𝑗),                                       (2.7) 
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where (𝑔𝑖𝑗)
−1

 is the inverse matrix of (𝑔𝑖𝑗). 

On the other hand, from (2.5)-(2.7), the Gaussian and 

mean curvature of a hypersurface in 𝐸4 are  

𝐾 =
𝑑𝑒𝑡(ℎ𝑖𝑗)

𝑑𝑒𝑡(𝑔𝑖𝑗)
                                                               (2.8) 

and 

3𝐻 = 𝑡𝑟(𝑆),                                                                 (2.9) 

respectively. 

Let 𝛾(𝑥) = (𝑥, 0, 0, 𝑓(𝑥)) be a profile curve in xt-plane 

defined on any open interval 𝐼 ⊂ 𝑅. Then, the rotational 

hypersurface 𝑀 in 𝐸4 is given by 

𝑀:𝑋(𝑥, 𝑦, 𝑧) = (𝑥𝑐𝑜𝑠𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑧, 𝑓(𝑥)) 
(2.10) 

where 𝑓 : 𝐼 ⊂ 𝑅 − {0}  → 𝑅 is a 𝐶∞ function for all 𝑥 ∈
𝐼 and 0 ≤ 𝑦, 𝑧 ≤ 2𝜋. 

The Gaussian curvature G and the mean curvature H of 

rotational hypersurface are obtained as follows [13, 32, 

33]. 

𝐺 = −
𝑓′(𝑥)2𝑓″(𝑥)

𝑥2(1+𝑓′(𝑥)2)5 2⁄ ,                                           (2.11) 

 𝐻 = −
𝑥𝑓″(𝑥)+2𝑓′(𝑥)3+2𝑓′(𝑥)

3𝑥(1+𝑓′(𝑥)2)3 2⁄ .                               (2.12) 

Also, the unit normal vector 𝑁 of the rotational 

hypersurface is  

𝑁 =
(𝑐𝑜𝑠𝑦𝑐𝑜𝑠𝑧𝑓′(𝑥),𝑠𝑖𝑛𝑦𝑐𝑜𝑠𝑧𝑓′(𝑥),𝑓𝑠𝑖𝑛𝑧𝑐𝑜𝑠𝑧𝑓′(𝑥)−1)

√1+𝑓′(𝑥)2
.      (2.13) 

 

3. ROTATIONAL HYPERSURFACES IN 𝐄𝟒 

In this section, the solutions of (2.11) and (2.12) will be 

given. Furthermore, some results and examples of the 

rotational hypersurfaces will be given. 

3.1. The solution of Gaussian curvature of rotational 

hypersurface 

To solve Eq. (2.11) which is a second-order nonlinear 

ordinary differential equation (NODE), we assume 

𝐴 = −
𝑓′(𝑥)3

𝑥6(1+𝑓′(𝑥)2)3 2⁄ .                                            (3.1) 

From equations (2.11) and (3.1), we have 

 𝐴′ = −
6𝐴

𝑥
−
3𝐺(𝑥)

𝑥4
. 

It is a first-order linear ordinary differential equation with 

respect to 𝐴 and its general solution is computed as 

𝐴 =
𝑐1−3∫ 𝐺

𝑥
1 (𝑡)𝑡2𝑑𝑡

𝑥6
,                                                (3.2) 

where 𝑐1 ∈ 𝑅. Also, the equations (3.1) and (3.2) imply 

(1 + 𝑓′(𝑥)2)
3

2(𝑐1 − 3∫ 𝐺(𝑡)
𝑥

1
𝑡2𝑑𝑡) = 𝑓′(𝑥)3.      (3.3) 

Thus, the general solution of Eq. (3.3) is 

𝑓(𝑥) = ±∫
(𝑐1−3∫ 𝐺(𝑡)

𝑥
1 𝑡2𝑑𝑡)

1
3⁄

√1−(𝑐1−3∫ 𝐺(𝑡)
𝑥
1 𝑡2𝑑𝑡)

2
3⁄
𝑑𝑥 + 𝑐2,      

where 𝑐2 is constant and (𝑐1 − 3∫ 𝐺(𝑡)
𝑥

1
𝑡2𝑑𝑡)

2

3 < 1. 

Conversely, let G(x)  be a smooth function defined on an 

open interval 𝐼 ⊂ 𝑅. Then, for any 𝑥0 ∈ 𝐼, there exist an 

open subinterval 𝐼1 ⊂ 𝑅  of  𝑥0 (𝐼1 ⊂ 𝐼) and an open 

interval 𝐼2 of R containing 

𝑐10 = (3∫ 𝐺
𝑥

1
(𝑡)𝑡2𝑑𝑡)( 𝑥0) 

such that function 

𝐹(𝑥, 𝑐1) = 1 − (𝑐1 − 3∫ 𝐺(𝑡)
𝑥

1

𝑡2𝑑𝑡)

2
3⁄

> 0 

for any (𝑥, 𝑐1) ∈ 𝐼1 × 𝐼2. In fact, because of 

F(𝑥0, 𝑐10) = 1 > 0, by the continuity of F, it is positive in 

a subset of  𝐼1 × 𝐼2 ⊂ 𝑅
2. Therefore, for any (𝑥, 𝑐1) ∈

𝐼1 × 𝐼2, c2 ∈ R and any given smooth function G(x), we 

can define the two-parameter family of curves 

𝛾(𝑥, 𝐺, 𝑐1, 𝑐2) = 

(

 𝑥, 0, 0,  ± ∫
(𝑐1 − 3∫ 𝐺(𝑡)

𝑥

1
𝑡2𝑑𝑡)

1
3⁄

√1 − (𝑐1 − 3∫ 𝐺(𝑡)
𝑥

1
𝑡2𝑑𝑡)

2
3⁄

𝑑𝑥 + 𝑐2

)

 . 

By performing the one-parameter subgroup on these 

curves, the two-parameter family of rotational 

hypersurfaces with the Gaussian curvature G(x) can be 

obtained. 

 

Theorem 3.1. Let 𝛾(𝑥) = (𝑥, 0, 0, 𝑓(𝑥)) be a profile 

curve of the rotational hypersurface (2.10) with the 

Gaussian curvature at the point (𝑥, 0, 0, 𝑓(𝑥))  given by 

G(x) in the Euclidean 4-space. Then, for some constants 

𝑐1 and 𝑐2 there exists the two-parameter family of 

rotational hypersurface generated by plane curves 

𝛾(𝑥, 𝐺(𝑥), 𝑐1, 𝑐2) = (𝑥, 0, 0,  ±

∫
(𝑐1−3∫ 𝐺(𝑡)

𝑥
1 𝑡2𝑑𝑡)

1
3⁄

√1−(𝑐1−3∫ 𝐺(𝑡)
𝑥
1 𝑡2𝑑𝑡)

2
3⁄

𝑑𝑥 + 𝑐2) .          (3.4) 

Let G(x) be a smooth function. The two-parameter family 

of curves 𝛾(𝑥, 𝐺(𝑥), 𝑐1, 𝑐2) can be constructed and the 

two-parameter families of rotational hypersurfaces with 

the Gaussian curvature can be given by 

𝑋𝐺(𝑥, 𝑦, 𝑧) = (𝑥𝑐𝑜𝑠𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑧, 

±∫
(𝑐1−3∫ 𝐺(𝑡)

𝑥
1 𝑡2𝑑𝑡)

1
3⁄

√1−(𝑐1−3∫ 𝐺(𝑡)
𝑥
1 𝑡2𝑑𝑡)

2
3⁄

𝑑𝑥 + 𝑐2).   (3.5) 

 

Corollary 3.1. Let 𝑀 be the rotational hypersurfaces in 

𝐸4 with constant Gaussian curvature (𝐺(𝑥) = 𝑑1 ∈ 𝑅). 

Then M can be parameterized by 

𝑋𝐺(𝑥, 𝑦, 𝑧) = (𝑥𝑐𝑜𝑠𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑧, 

±∫
(𝑐1−𝑑1𝑥

3+𝑑1)
1
3⁄

√1−(𝑐1−𝑑1𝑥
3+𝑑1)

2
3⁄
𝑑𝑥 + 𝑐2), 

where 𝑐1, 𝑐2 ∈ 𝑅 and 1 > (𝑐1 − 𝑑1𝑥
3 + 𝑑1)

2

3. 
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Corollary 3.2. Let 𝑀 be a flat rotational hypersurfaces in 

𝐸4. Then M can be parameterized by 

𝑋𝐺(𝑥, 𝑦, 𝑧) =

(𝑥𝑐𝑜𝑠𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑧,
(𝑐1)

1
3⁄

√1−(𝑐1)
2
3⁄
𝑥 + 𝑐2), 

where 𝑐1, 𝑐2 ∈ 𝑅 and 1 > (𝑐1)
2
3⁄  [13,32,33]. 

Example 3.1. If the Gaussian curvature of rotational 

hypersurfaces (3.5) in the Euclidean 4-space is 𝐺(𝑥) =
−1

3𝑥2
, then it can be parametrized 

𝑋𝐺(𝑥, 𝑦, 𝑧) = (𝑥𝑐𝑜𝑠𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑧, 

±(−√1 − (𝑥 − 1)
2

3(2 + (𝑥 − 1)
2

3)),         

where 𝑐1 = 0, 𝑐2 = 0 and 1 > (𝑥 − 1)
2

3. 

Figure 1 show the projections of the rotational 

hypersurface 𝑋𝐺 with 𝐺(𝑥) =
−1

3𝑥2
 and z = 

𝜋

6
 into yzt, xzt, 

xyt and xyz-spaces in (a), (b), (c) and (d), respectively. 

      

           (a)                                               (b) 

  

                      (c)                                          (d) 

Figure 1. Projections of the rotational hypersurface for 

𝐺(𝑥) a) yzt-spaces, b) xzt-spaces, c) xyt-spaces, d) xyz-

spaces 

3.2. The solution of mean curvature of rotational 

hypersurface 

To solve Eq. (2.11) which is a second-order nonlinear 

ordinary differential equation, we take 

𝐵 =
𝑓′(𝑥)

𝑥√1+𝑓′(𝑥)2
.                                                          (3.6) 

From the equations (2.11) and (3.6), we have 

 𝐵′ = −
3𝐵

𝑥
−
3𝐻(𝑥)

𝑥
 .                                                   (3.7) 

The solution of first-order linear ordinary differential 

equation (3.7) is  

𝐵 =
𝑐3−3∫ 𝐻

𝑥
1 (𝑡)𝑡2𝑑𝑡

𝑥3
 ,                                                  (3.8) 

where 𝑐3 ∈ 𝑅. Also, from equations (3.6) and (3.8), we 

get 

√(1 + 𝑓′(𝑥)2)(𝑐3 − 3∫ 𝐻
𝑥

1
(𝑡)𝑡2𝑑𝑡) = 𝑥2𝑓′(𝑥).    (3.9) 

So, the general solution of (3.9) is 

𝑓(𝑥) = ±∫
𝑐3−3∫ 𝐻

𝑥
1 (𝑡)𝑡2𝑑𝑡

√𝑥4−(𝑐3−3∫ 𝐻
𝑥
1 (𝑡)𝑡2𝑑𝑡)2

𝑑𝑥 + 𝑐4,       

where 𝑐4 is constant and (𝑐3 − 3∫ 𝐻
𝑥

1
(𝑡)𝑡2𝑑𝑡)2 < 𝑥4. 

Conversely, let H(x)  be a smooth function defined on 

an open interval 𝐼 ⊂ 𝑅 and 

𝐹(𝑥, 𝑐1) = 𝑥
4 − (𝑐3 − 3∫ 𝐻

𝑥

1

(𝑡)𝑡2𝑑𝑡)

2

> 0 

be a function defined on 𝐼1 × 𝑅 ⊂ 𝑅
2. For any 𝑥0 ∈ 𝐼, 

there exists 

𝑐30 = (3∫ 𝐻
𝑥

1
(𝑡)𝑡2𝑑𝑡)( x0). 

So, we can find an open subinterval 𝑥0 ∈ 𝐼1 ⊂ 𝐼 and an 

open interval 𝑐30 ∈ I2 ⊂ R. That is the function 𝐹(𝑥, 𝑐3) 

for any (𝑥, 𝑐3) ∈ 𝐼1 × 𝐼2. In fact,  

F(𝑥0, 𝑐30) = 𝑥0
4 > 0, by the continuity of F, it is 

positive in a subset of  𝐼1 × 𝐼2 ⊂ 𝑅
2. Therefore, for any 

(𝑥, 𝑐3) ∈ 𝐼1 × 𝐼2, c2 ∈ R and any given smooth function 

H(x), we can define the two-parameter family of curves 

 

 

𝛾(𝑥, 𝐻, 𝑐3, 𝑐4) = 

(

 𝑥, 0, 0,  ± ∫
𝑐3 − 3∫ 𝐻

𝑥

1
(𝑡)𝑡2𝑑𝑡

√𝑥4 − (𝑐3 − 3∫ 𝐻
𝑥

1
(𝑡)𝑡2𝑑𝑡)

2
𝑑𝑥 + 𝑐4

)

 . 

Consequently, we can obtain a two-parameter family of 

rotational hypersurfaces with the mean curvature H(x). 

 

Theorem 3.2. Let 𝛾(𝑥) = (𝑥, 0, 0, 𝑓(𝑥))  be a profile 

curve of the rotational hypersurface (2.10) with the mean 

curvature at the point (𝑥, 0, 0, 𝑓(𝑥)) given by H(x) in the 

Euclidean 4-space. Then, for some constants 𝑐3 and 𝑐4 

there exists the two-parameter family of rotational 

hypersurface generated by plane curves 

𝛾(𝑥, 𝐻(𝑥), 𝑐3, 𝑐4) = 

(𝑥, 0, 0,  ± ∫
𝑐3−3∫ 𝐻

𝑥
1

(𝑡)𝑡2𝑑𝑡

√𝑥4−(𝑐3−3∫ 𝐻
𝑥
1

(𝑡)𝑡2𝑑𝑡)
2
𝑑𝑥 + 𝑐4).     (3.10) 

Let H(x) be a smooth function. The two-parameter family 

of curves 𝛾(𝑥, 𝐻(𝑥), 𝑐3, 𝑐4)  can be constructed and the 

two-parameter families of rotational hypersurfaces with 

the mean curvature can be given by 

𝑋𝐻(𝑥, 𝑦, 𝑧) = (𝑥𝑐𝑜𝑠𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑧, 
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= ±∫
𝑐3−3∫ 𝐻

𝑥
1 (𝑡)𝑡2𝑑𝑡

√𝑥4−(𝑐3−3∫ 𝐻
𝑥
1 (𝑡)𝑡2𝑑𝑡)2

𝑑𝑥 + 𝑐4).        (3.11) 

Corollary 3.3. Let 𝑀 be the rotational hypersurfaces in 

𝐸4 with constant mean curvature (𝐻(𝑥) = 𝑑2 ∈ 𝑅). Then 

M can be parameterized by 

𝑋𝐻(𝑥, 𝑦, 𝑧) = (𝑥𝑐𝑜𝑠𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑧, 

±∫
c3−𝑑2x

3+𝑑2

√𝑥4−(c3−𝑑2x
3+𝑑2)

2
dx + c4), 

where 𝑐3, 𝑐4 ∈ 𝑅 and 𝑥4 > (𝑐3 − 𝑑2𝑥
3 + 𝑑2)

2. 

Corollary 3.4. Let 𝑀 be a minimal rotational 

hypersurfaces in 𝐸4. Then M can be parameterized by 

𝑋𝐻(𝑥, 𝑦, 𝑧) =

  (𝑥𝑐𝑜𝑠𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑧, ±∫
𝑐3

√𝑥4−(𝑐3)
2
𝑑𝑥 + 𝑐4), 

where 𝑐3 and 𝑐4 ∈ 𝑅 [13,32,33]. 

Example 3. If the mean curvature of rotational 

hypersurfaces (3.11) in the Euclidean 4-space is 𝐻(𝑥) =
2 sin(𝑥)+𝑥𝑐𝑜𝑠(𝑥)

−3𝑥
, then it can be parametrized 

𝑋𝐻(𝑥, 𝑦, 𝑧) = (𝑥𝑐𝑜𝑠𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑧, 

±(−𝑙𝑛 (cos (𝑥)))),   (3.12)   

where 𝑐3 = sin(1) , 𝑐4 = 0 and 
𝜋

2
> 𝑥 >

−𝜋

2
. 

Figure 2 show the projections of the rotational 

hypersurface 𝑋𝐻 with 𝐻(𝑥) =
2 sin(𝑥)+𝑥𝑐𝑜𝑠(𝑥)

−3𝑥
 and z = 

𝜋

6
 

into yzt, xzt, and xyt-spaces in (a), (b) and (c), 

respectively. 

(Here, we take " ± " in the equation (3.12) as “+”.)

 

(a) 

(b) 

 

(c) 

Figure 2. Projections of the rotational hypersurface for 𝐻(𝑥) a) 

yzt-spaces, b) xzt-spaces, c) xyt-spaces 

 

4.  ROTATIONAL HYPERSURFACES IN 𝐄𝟒 

WITH DENSITY 

In this section, the weighted mean and weighted 

Gaussian curvatures of a rotational hypersurface in 4-D 

Euclidean space with density will be given. Also, these 

curvatures which are the second-order non-linear 

ordinary differential equation will be solved. Besides, the 

examples of a rotational hypersurface with different 

weighted Gaussian and weighted mean curvature in 𝐸4 

with density will be given. 

4.1. Weighted Gaussian Curvatures of Rotational 

Hypersurfaces in 𝑬𝟒 with Density 

𝒆𝒂𝒙
𝟐+𝒃𝒚𝟐+𝒄𝒛𝟐+𝒅𝒕𝟐   

From (1.2), (2.10) and (2.11), the weighted Gaussian 

curvature of the rotational hypersurface in Euclidean 4-

space with density 𝑒𝑎𝑥
2+𝑏𝑦2+𝑐𝑧2+𝑑𝑡2 is obtained as  

𝐺𝜑(𝑥) = −(
𝑓′(𝑥)2𝑓′′(𝑥)+2𝑥2(𝑎+𝑏+𝑐+𝑑)(1+𝑓′(𝑥)2)

5 2⁄

𝑥2(1+𝑓′(𝑥)2)5 2⁄ ),   (4.1) 

where 𝑎, 𝑏, 𝑐 and 𝑑 are not all zero constants. When 

calculations similar to ones in the subsection (3.1) are 

carried out, the following theorem is obtained. 

 

Theorem 4.1. Let 𝛾(𝑥) = (𝑥, 0, 0, 𝑓(𝑥))  be a profile 

curve of the rotational hypersurface (2.10) with the  

weighted Gaussian curvature at the point (𝑥, 0, 0, 𝑓(𝑥))   
given by 𝐺𝜑(x) in the Euclidean 4-space with density 

𝑒𝑎𝑥
2+𝑏𝑦2+𝑐𝑧2+𝑑𝑡2. Then, for some constants 𝑐5 and 𝑐6 

there exists the two-parameter family of rotational 

hypersurface generated by plane curves 

𝛾(𝑥, 𝐺𝜑(𝑥), 𝑐5, 𝑐6) = 

(𝑥, 0, 0,  ± ∫
(𝑐5−3∫ (𝐺𝜑(𝑡)+2(𝑎+𝑏+𝑐+𝑑))

𝑥

1
𝑡2𝑑𝑡)

1
3⁄

√1−(𝑐5−3∫ (𝐺𝜑(𝑡)+2(𝑎+𝑏+𝑐+𝑑))
𝑥

1
𝑡2𝑑𝑡)

2
3⁄
𝑑𝑥 + 𝑐6) .   

(4.2) 

Conversely, let 𝐺𝜑(x) be a smooth function. Two-

parameter family of curves 𝛾(𝑥, 𝐺𝜑(𝑥), 𝑐5, 𝑐6) can be 

constructed and so the two-parameter families of 

rotational hypersurfaces with the weighted Gaussian 

curvature can be given by 

𝑋𝐺𝜑(𝑥, 𝑦, 𝑧) = (𝑥𝑐𝑜𝑠𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑧, 

±∫
(𝑐5−3∫ (𝐺𝜑(𝑡)

𝑥
1 ++2(𝑎+𝑏+𝑐+𝑑))𝑡2𝑑𝑡)

1
3⁄

√1−(𝑐5−3∫ (𝐺𝜑(𝑡)++2(𝑎+𝑏+𝑐+𝑑))
𝑥
1 𝑡2𝑑𝑡)

2
3⁄

𝑑𝑥 + 𝑐6)        

(4.3) 

where 𝑐5 and 𝑐6 is constant and 

 (𝑐5 − 3∫ (𝐺𝜑(𝑡)
𝑥

1
+2(𝑎 + 𝑏 + 𝑐 + 𝑑))𝑡2𝑑𝑡)

2
3⁄ < 1. 

Corollary 4.1. Let 𝑀 be the rotational hypersurfaces in 

𝐸4 with density 𝑒𝑎𝑥
2+𝑏𝑦2+𝑐𝑧2+𝑑𝑡2with constant weighted 

Gaussian curvature (𝐺𝜑(𝑥) = 𝑑3 ∈ 𝑅). Then M can be 

parameterized by 

𝑋𝐺𝜑(𝑥, 𝑦, 𝑧) = (𝑥𝑐𝑜𝑠𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑧, 

±∫
(𝑐5−[2(𝑎+𝑏+𝑐+𝑑)+𝑑3](𝑥

3−1))
1
3⁄

√1−(𝑐5−[2(𝑎+𝑏+𝑐+𝑑)+𝑑3](𝑥
3−1))

2
3⁄
𝑑𝑥 + 𝑐6), 

where 𝑐5, 𝑐6 ∈ 𝑅 and  

1 > (𝑐5 − [2(𝑎 + 𝑏 + 𝑐 + 𝑑) + 𝑑3](𝑥
3 − 1))

2
3⁄  
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Example 4.1. Consider rotational hypersurfaces with the 

weighted Gaussian curvature 

𝐺𝜑(x) =
sin (𝑥)

3𝑥2
− 2(𝑎 + 𝑏 + 𝑐 + 𝑑), in the Euclidean 4-

space with density 𝑒𝑎𝑥
2+𝑏𝑦2+𝑐𝑧2+𝑑𝑡2. So, we get the 

rotational hypersurfaces in equation (3.5) as 

𝑋𝐺𝜑(𝑥, 𝑦, 𝑧) = (𝑥𝑐𝑜𝑠𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑧, 

±
1

2
(3 arcsinh(

1+2(cos(𝑥))
2
3

√3
) + √3(ln (1 − (cos(𝑥))

2

3) − ln (3 +

3(cos (𝑥))
2

3 + 2√3(1 + (cos(𝑥))
2

3 + (cos (𝑥))
4

3))),         

where 𝑐5 = cos(1) , 𝑐6 = 0. 

Figure 3 show the projections of the rotational 

hypersurface X𝐺𝜑  with the  

𝐺𝜑(x) =
sin (𝑥)

3𝑥2
− 2(𝑎 + 𝑏 + 𝑐 + 𝑑) and z = 

𝜋

6
 into yzt, 

xzt, and xyt-spaces in (a), (b) and (c), respectively. 

(a) 

(b) 

 

(c) 

Figure 3.  Projections of the rotational hypersurface for 𝐺𝜑(x) 

a) yzt-spaces, b) xzt-spaces, c) xyt-spaces 

 

4.2. Weighted Mean Curvatures of Rotational 

Hypersurfaces in 𝑬𝟒 with Density 𝒆𝒂𝒙
𝟐+𝒃𝒚𝟐+𝒄𝒛𝟐  

From (1.1), (2.12) and (2.13), the weighted mean 

curvature of the rotational hypersurface in Euclidean 4-

space with density 𝑒𝑎𝑥
2+𝑏𝑦2+𝑐𝑧2 is obtained as  

𝐻𝜑 = −(
𝐴.𝑓′(𝑥)+4𝑥𝑓′′(𝑥)+𝐴𝑓′(𝑥)3

12𝑥(1+𝑓′(𝑥)2)3 2⁄ ),                                 (4.4) 

where 𝑎, 𝑏, 𝑐 are not all zero constants and 

A=8 + 2𝑎𝑥2 + 2𝑏𝑥2 + 4𝑐𝑥2 + 2(𝑎 − 𝑏)𝑥2𝑐𝑜𝑠[2𝑦] 

+(𝑎 − 𝑏)𝑥2𝐶𝑜𝑠[2(𝑦 − 𝑧)] + 2𝑎𝑥2𝑐𝑜𝑠[2𝑧] 

  +2𝑏𝑥2𝑐𝑜𝑠[2𝑧] − 4𝑐𝑥2𝑐𝑜𝑠[2𝑧] 

+𝑎𝑥2𝑐𝑜𝑠[2(𝑦 + 𝑧)] − 𝑏𝑥2𝑐𝑜𝑠[2(𝑦 + 𝑧)]. 

Especially, if we take a=b=c in the weighted mean 

curvature (4.4) of the rotational hypersurface in 

Euclidean 4-space with density 𝑒𝑎𝑥
2+𝑎𝑦2+𝑎𝑧2 , then we 

obtain 

𝐻𝜑 = −(
2(1+𝑎𝑥2)𝑓′(𝑥)+𝑥𝑓′′(𝑥)+2(1+𝑎𝑥2)𝑓′(𝑥)3

3𝑥(1+𝑓′(𝑥)2)3 2⁄ ),          (4.5) 

where 0 ≠ 𝑎 ∈ 𝑅. 

To solve the second-order nonlinear ordinary differential 

eq. (4.5), let take 

𝐶 =
𝑓′(𝑥)

x2√1+𝑓′(𝑥)2
.                                                        (4.6) 

From equations (4.5) and (4.6), we have 

 𝐶′ = −(
4

𝑥
+ 2𝑎𝑥) 𝐶 −

3𝐻𝜑(𝑥)

𝑥2
.                                 (4.7) 

The solution of first-order linear ordinary differential 

equation (4.7) is  

𝐶 =
𝑐7−3∫ 𝑒𝑎𝑡

2
𝐻𝜑

𝑥
1 (𝑡)𝑡2𝑑𝑡

𝑥4𝑒𝑎𝑥
2 ,                                          (4.8) 

where 𝑐7 ∈ 𝑅. Also, from equations (4.6) and (4.8), we 

get 

√(1 + 𝑓′(𝑥)2)(𝑐7 − 3∫ 𝑒𝑎𝑡
2
𝐻𝜑

𝑥

1
(𝑡)𝑡2𝑑𝑡) = 𝑥2𝑒𝑎𝑥

2
𝑓′(𝑥)  .    

(4.9) 

So, the general solution of equation (4.9) is 

𝑓(𝑥) = ±∫
𝑐7−3∫ 𝑒𝑎𝑡

2
𝐻𝜑

𝑥
1 (𝑡)𝑡2𝑑𝑡

√𝑥4𝑒2𝑎𝑥
2
−(𝑐7−3∫ 𝑒𝑎𝑡

2
𝐻𝜑

𝑥
1 (𝑡)𝑡2𝑑𝑡)2

𝑑𝑥 + 𝑐8,       

where 𝑐8 is constant and 

 (𝑐7 − 3∫ 𝑒𝑎𝑡
2
𝐻𝜑

𝑥

1
(𝑡)𝑡2𝑑𝑡)2 < 𝑥4𝑒𝑎𝑥

2
. 

Conversely, let 𝐻𝜑  (x)  be a smooth function defined on 

an open interval 𝐼 ⊂ 𝑅 and 

𝐹(𝑥, 𝑐7) = 𝑥
4𝑒2𝑎𝑥

2
− (𝑐7 − 3∫ 𝑒𝑎𝑡

2
𝐻𝜑

𝑥

1

(𝑡)𝑡2𝑑𝑡)2 > 0 

be a function defined on 𝐼1 × 𝑅 ⊂ 𝑅
2. For any 𝑥0 ∈ 𝐼, 

there exists 

𝑐70 = (3∫ 𝑒𝑎𝑡
2
𝐻𝜑

𝑥

1
(𝑡)𝑡2𝑑𝑡))( 𝑥0). 

So, we can find an open subinterval 𝑥0 ∈ 𝐼1 ⊂ 𝐼 and an 

open interval 𝑐70 ∈ 𝐼2 ⊂ 𝑅. That is the function 𝐹(𝑥, 𝑐7) 

for any (𝑥, 𝑐7) ∈ 𝐼1 × 𝐼2. In fact, because  

F(𝑥0, 𝑐70) = 𝑥4𝑒𝑎𝑥
2

 > 0, by the continuity of F, it is 

positive in a subset of  𝐼1 × 𝐼2 ⊂ 𝑅
2. Therefore, for any 

(𝑥, 𝑐7) ∈ 𝐼1 × 𝐼2, c2 ∈ R and any given smooth function 

𝐻𝜑 (x), we can define the two-parameter family of curves 

𝛾(𝑥, 𝐻𝜑 , 𝑐7, 𝑐8) = 

(

 𝑥, 0, 0,  ± ∫
𝑐7 − 3∫ 𝑒𝑎𝑡

2
𝐻𝜑

𝑥

1
(𝑡)𝑡2𝑑𝑡

√𝑥4𝑒2𝑎𝑥
2
− (𝑐7 − 3∫ 𝑒𝑎𝑡

2
𝐻𝜑

𝑥

1
(𝑡)𝑡2𝑑𝑡)

2
𝑑𝑥 + 𝑐8

)

 . 

Consequently, we can obtain a two-parameter family of 

rotational hypersurfaces in E4 with density 𝑒𝑎𝑥
2+𝑎𝑦2+𝑎𝑧2  

with the weighted mean curvature 𝐻𝜑(x). 
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Theorem 4.2. Let 𝛾(𝑥) = (𝑥, 0, 0, 𝑓(𝑥))  be a profile 

curve of the rotational hypersurface (2.10) with the 

weighted mean curvature at the point (𝑥, 0, 0, 𝑓(𝑥))   
given by 𝐻𝜑(x)   in the Euclidean 4-space with density 

𝑒𝑎𝑥
2+𝑎𝑦2+𝑎𝑧2. Then, for some constants 𝑐7, 𝑐8 , there 

exists the two-parameter family of rotational 

hypersurface generated by plane curves 

𝛾(𝑥, 𝐻𝜑(𝑥), 𝑐7, 𝑐8) = 

(𝑥, 0, 0,  ± ∫
𝑐7−3∫ 𝑒𝑎𝑡

2
𝐻𝜑

𝑥
1 (𝑡)𝑡2𝑑𝑡

√𝑥4𝑒2𝑎𝑥
2
−(𝑐7−3∫ 𝑒𝑎𝑡

2
𝐻𝜑

𝑥
1 (𝑡)𝑡2𝑑𝑡)2

𝑑𝑥 + 𝑐8).     

(4.10) 

Conversely, let 𝐻𝜑(x) be a smooth function. Then, we can 

construct the two-parameter family of curves 

𝛾(𝑥, 𝐻𝜑(𝑥), 𝑐3, 𝑐4) and so the two-parameter families of 

rotational hypersurfaces in 𝐸4 with density 𝑒𝑎𝑥
2+𝑎𝑦2+𝑎𝑧2  

with the weighted mean curvature can be given by 

𝑋𝐻𝜑(𝑥, 𝑦, 𝑧) = (𝑥𝑐𝑜𝑠𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑧, 

±∫
𝑐7−3∫ 𝑒𝑎𝑡

2
𝐻𝜑

𝑥
1 (𝑡)𝑡2𝑑𝑡

√𝑥4𝑒2𝑎𝑥
2
−(𝑐7−3∫ 𝑒𝑎𝑡

2
𝐻𝜑

𝑥
1 (𝑡)𝑡2𝑑𝑡)2

𝑑𝑥 + 𝑐8).     (4.11) 

Corollary 4.2. Let 𝑀 be the rotational hypersurfaces in 

𝐸4 with density 𝑒𝑎𝑥
2+𝑎𝑦2+𝑎𝑧2with constant weighted 

mean curvature (𝐻𝜑(𝑥) = 𝑑4 ∈ 𝑅). Then M can be obtain 

by using Mathematica, as follows 

XHφ(x, y, z) = (xcosycosz, xsinycosz, xsinz, 

±∫
𝑀

√𝑥4𝑒2𝑎𝑥
2
−(𝑀)2

𝑑𝑥 + 𝑐8), 

where c7, 𝑐8 ∈ R, 𝑥4 > (𝑀)2 and  

𝑀 = 𝑐7 +
3𝑑4(2√𝑎(𝑒𝑎 − 𝑒𝑎𝑥

2
𝑥) + √𝜋(−𝐸𝑟𝑓𝑖[√𝑎] + 𝐸𝑟𝑓𝑖[√𝑎𝑥]))

4𝑎3 2⁄
 

Example 4.2. Consider a rotational hypersurfaces with 

the weighted mean curvature 𝐻𝜑(𝑥) =
1+2𝑎𝑥2

−3𝑥2
 in the 

Euclidean 4-space with density 𝑒𝑎𝑥
2+𝑎𝑦2+𝑎𝑧2 . So we get 

the rotational hypersurfaces in equation (4.11) as 

𝑋𝐻𝜑(𝑥, 𝑦, 𝑧) = (𝑥𝑐𝑜𝑠𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑦𝑐𝑜𝑠𝑧, 𝑥𝑠𝑖𝑛𝑧, 

±(𝑙 𝑛(𝑥 + √𝑥2 − 1)),    

where 𝑐7 = 𝑒
𝑎 , 𝑐8 = 0 and 𝑥 ≥ 1. 

Figure 4 show the projections of the rotational 

hypersurface X𝐻𝜑 with the 𝐻𝜑(x) =
1+2𝑎𝑥2

−3𝑥2
 

 and z = 
𝜋

6
 into yzt, xzt, and xyt-spaces in (a), (b) and (c), 

respectively. 

 

(a) 

 

(b) 

 

(c) 

Figure 4. Projections of the rotational hypersurface for 

𝐻𝜑(x) a) yzt-spaces, b) xzt-spaces, c) xyt-

spaces 

 

5. CONCLUSION 

The surface theory has an important place in 4-

dimensional spaces as in 3-dimensional spaces. So, in the 

study, we consider the rotational hypersurfaces in 

Euclidean 4-space with density and obtain the weighted 

minimal and weighted flat rotational hypersurfaces in 

this space. We think that the results which are obtained 

in this study are important for differential geometers who 

are dealing with weighted surfaces. In fact, the results 

which are stated in this study better be handled in 

different four or higher dimensional spaces. 
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