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Abstract  Öz 

The aim of this paper is to investigate the rehydration properties of 
freeze- and vacuum-dried damson plums (Prunus insititia) at three 
different temperatures (25, 45 and 60°C). First, kinetic models (Weibull, 
Peleg, Exponential and First-order) were designed to construct 
mathematical models and analyze the rehydration kinetics. Second, an 
artificial Chebsyhev network was designed for modeling of the 
rehydration kinetics such that a novel extreme learning machine-based 
feature extraction layer is proposed to improve its modeling capability. 
The experimental data and artificial models were analyzed considering 
the randomly selected data sets, and the root mean squared errors 
(RMSE) were computed to compare accuracy of the models. Due to 
orthogonality and feature extraction, the proposed enhanced 
Chebyshev network was obtained as the best approximator model 
among tested models with the the lowest RMSE values to explain the 
rehydration behavior of damson plums. While the percentage RMSE 
values for kinetic models vary in the range of ~3.1 and 4.8%, the 
maximum and minimum percentage values for Chebyshev networks are 
2.32% and 0.51%, respectively. It is concluded that the proposed 
Chebyshev network can be used as a parsimonious model in the 
embedded design of the rehydration and drying machines so that 
predefined rehydration and drying characteristics can be accurately 
defined. 

 Bu çalışmanın amacı, dondurarak ve vakumla kurutulmuş mürdüm 
eriklerinin (Prunus insititia) üç farklı sıcaklıkta (25, 45 ve 60°C) 
rehidrasyon özelliklerini incelemektir. İlk olarak, kinetik modeller 
(Weibull, Peleg, Üstel ve Birinci derece) matematiksel modeller 
oluşturmak ve rehidrasyon kinetiğini analiz etmek için tasarlanmıştır. 
İkinci olarak, yapay bir Chebsyhev ağı, modelleme kabiliyetini 
geliştirmek için yeni bir aşırı öğrenme makinesi tabanlı özellik çıkarma 
katmanı önerilecek şekilde rehidrasyon kinetiğinin modellenmesi için 
tasarlanmıştır. Deneysel veriler ve yapay modeller, rastgele seçilen veri 
setleri dikkate alınarak analiz edilmiş ve modellerin doğruluğunu 
karşılaştırmak için hataların kök ortalama kareleri (RMSE) 
hesaplanmıştır. Diklik ve öznitelik çıkarımı nedeniyle önerilen 
geliştirilmiş Chebyshev ağı, mürdüm eriklerinin rehidrasyon 
davranışını açıklamak için en düşük RMSE değerleri ile test edilen 
modeller arasında en iyi yaklaşım modeli olarak elde edilmiştir. Kinetik 
modelleri için yüzde RMSE değerleri ~%3.1 ve 4.8 aralığında değişirken, 
Chebyshev ağları için maksimum ve minimum yüzde değerleri sırasıyla 
%2.32 ve %0.51'dir. Önerilen Chebyshev ağının, rehidrasyon ve 
kurutma makinelerinin gömülü tasarımında cimri bir model olarak 
kullanılabileceği ve böylece rehidrasyon ve kurutma özelliklerinin 
önceden doğru bir şekilde tanımlanabileceği sonucuna varılmıştır. 

Keywords: Rehydration, Feature extraction, Artificial chebyshev 
network, Freeze drying, Damson plum. 

 Anahtar kelimeler: Rehidrasyon, Öznitelik çıkarımı, Yapay 
Chebyshev ağı, Dondurarak kurutma, Mürdüm eriği. 

1 Introduction 

Vegetables and fruits have an important role in healthy 
nutrition with their high nutritional content and health-
beneficial components. However, their high-water content and 
perishability cause postharvest spoilage which leads fast 
degradation of the quality [1]. Dried products can be used 
instead of fresh foods in many processed products due to their 
advantages such as transport and storage. Most of the dried 
fruits are rehydrated before consumption or subsequent 
operations [2]. Rehydration is the process of restoring the 
properties of the fresh product when the dry product is 
immersed in water. The rehydrated products should be as 
similar as possible with fresh raw materials. Rehydration 
process can be affected by the drying method, drying conditions 
and the temperature of the rehydration medium. Rehydration 
indicates the degree of the damage to the structure of cell of the 
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product during the drying process [3]-[5]. In vacuum drying, 
while the heat transfer to the solid phase is significantly slowed 
down due to the absence of convection and the low water vapor 
pressure at the reduced evaporation temperature, but the 
removal of moisture is accelerated. Thus, vacuum drying 
process protects heat sensitive and easily oxidizable foods 
thanks to the process carried out in the absence of oxygen at 
low temperatures, so the color change and the loss of flavor can 
be prevented [6],[7]. However, loss of the quality of dried 
products cannot be completely avoided by using vacuum 
drying. Freeze drying is a sublimation process of ice fraction 
where water passes from solid to gaseous state to remove 
water from the foods. It is known as the most efficient drying 
method to preserve nutrients, taste, flavor and to obtain 
products having porous structures, and good rehydration 
capability [1],[8]. The rehydration rate of the freeze-dried foods 
is usually 4-6 times faster than that of conventional thermal 
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dried ones, making the freeze-dried products a good option for 
ready-to-eat instant meals [9]. As the rehydration rate is 
affected by the drying method, rehydration at higher 
temperatures increases the rehydration rate due to the effect of 
higher temperature on the wall of cell and tissue [10]. From a 
processing point of view, it is important to know how fast 
rehydration can be performed, as well as how the process 
variables will affect rehydration rate and how to estimate 
rehydration time under given conditions [11]. 

Models used to describe the rehydration process can be 
theoretical and empirical. The theoretical models based on 
Fick's First and Second Laws of Diffusion are complex as they 
contain many parameter and so functions, and therefore may 
not be suitable for practical calculations in the most cases. 
Empirical models confirmed by empirical data such as the 
Weibull distribution and Peleg equation can be utilized as 
accurate analytical mathematical tools for estimating and 
optimizing the rehydration kinetics [12],[13]. The effect of 
ultrasound and ethanol pre-treatments on pumpkin for 
rehydration and drying behaviors are investigated in Rojas et 
al. [14] and the rehydration behavior was explained by the 
Peleg model. Air-dried mushrooms of Morchella esculenta was 
investigated at various temperatures using Peleg and Weibull 
models for the effect of temperature on the rehydration 
behavior [15]. The Weibull and Peleg distribution models were 
also utilized to model rehydration kinetics of air-dried Shiitake 
mushroom where it was analyzed that lower immersion time 
and desirable texture were obtained using conventional 
rehydration [16]. The effect of temperature on the mass 
transfer kinetics during rehydration process was also 
investigated for aloe vera using Weibull model [17]. In Lopez-
Quiroga et al. [18], fresh tomatoes were first freeze-dried and 
subsequently rehydrated at different temperatures where four 
rehydration models were used to fit the experimental data and 
resultingly, the Exponential and Weibull models provided the 
most accurate descriptions of the rehydration. The pumpkin 
was dried with different techniques and rehydration kinetics 
were modeled with different models where the Weibull model 
provided the best rehydration fitting curve [19]. 

For the modeling of time series and measured input-output 
data, nonlinear mathematical models are usually used to 
understand the process behavior. Orthogonal polynomials-
based models are effective for the systems with less complexity 
and number of data [20],[ 21]. In Lee et al. [22], the rehydration 
process based on capillary movement rather than diffusion of 
water in the fruit samples were modeled using the Lucas 
Washburn equation. Mass transfer kinetics during osmotic 
dehydration of fruits and kaffir lime peel were modelled using 
artificial neural networks [23], [24]. Predictive models were 
developed to describe dehydration and rehydration kinetics for 
instant rice [25]. A simple polynomial model, artificial neural-
network and least-squares support vector machine were used 
to model dehydration of mahaleb pure where support vector 
machine regressor model was obtained as the optimal model 
[26]. 

In this paper, damson plums which can be consumed as a snack 
in dried form, and as a cold stewed fruit or as an ingredient 
yoghurt, etc. were dried by freeze and vacuum drying 
processes. Rehydration properties of the dried products in 
water were investigated at different temperatures where the 
rehydration behavior was modelled using artificial models. In 
the literature, studies in which rehydration behavior was 
determined mostly used well-known kinetic models. In this 

way, it is aimed to reveal the rehydration properties of damson 
plums, which show the physical and chemical changes that 
occur during the drying process, as a quality index. In the 
present work, an enhanced Chebyshev network is proposed by 
using extreme learning-based feature extraction of input data 
where its modeling performance is compared to the 
conventional Chebyshev network and known distribution 
models. The main purpose of the feature extraction layer is to 
improve the modeling performance of the Chebyshev network 
with a smaller number of parameters since the memory of the 
microcontrollers in industry is very small to embed a largely 
parameterized network particularly artificial neural network 
etc. It is planned that the modeling results will contribute the 
determining reconstitution properties of the damson plums 
also fruits having similar rehydration behavior.  

2 Materials and experiments 

2.1 Material  

Damson plum (Prunus domestica L.) fruits that were mature 
enough, dark-blue in color and almost the same size were 
purchased from a local market of Turkey. Each fruit was first 
divided into two equal parts, the seed was removed, and then 
sliced with the help of a knife. Immediately after slicing, the 
equal sized slices were placed in trays for freezing and vacuum 
drying. The primary moisture content of the fresh fruit was 
3.813±0.004 kg moisture/kg dry matter that was determined 
using standard oven method at 70°C for 2 days [27]. Before the 
freeze-drying process, freezing was carried out at -80°C for  
24 hours and the frozen fruits were transferred to a freeze 
dryer (CHRIST, Alpha 1-4 LSC, Germany). Vacuum drying 
method was performed in a vacuum oven (Nuve EV 018, 
Turkey) with a 15 L internal chamber at 50°C under 50 mbar of 
inside pressure. Both drying processes were terminated when 
the moisture content of the final product was below 10%. 

2.2 Rehydration 

Dried damson plum slices were rehydrated by immersing in 25, 
45 and 60°C of water bath (Memmert, WNB 22, Germany). Each 
dried sample was weighed before the experiments, then 
immersed in distilled water at a constant temperature with 
sample to pure water ratio of 1:20 (weight:volume) and 
removed after a predetermined time. The superficial water 
remaining on the surface of the samples was gently removed 
with a tissue paper and the samples were reweighed. A new 
sample was used for each rehydration time and the 
experiments were continued until the weight change was 
stabilized. All rehydration experiments were duplicated. 

2.3 Distribution models 

To determine the rehydration kinetics of dried samples four 
common distribution models namely Peleg, Weibull, first-order 
and exponential association were applied [18]. 

𝑀 = 𝑀0 +
𝑡

𝑘1 + 𝑘2𝑡
 (1) 

Where, 𝑀 is defined as the moisture content (kg water/kg dry 
matter), 𝑀0 is given as the initial moisture content of the sample 
(kg water/kg dry matter), 𝑡 is time (min), 𝑘1 is a kinetic rate 
constant and 𝑘2 is a characteristic constant of the model. The 
moisture content of the equilibrium point (𝑀𝑒 , 𝑘𝑔 water/

kg dry matter) is computed by  
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𝑀𝑒 = 𝑀0 +
1

𝑘2
 (2) 

for long rehydration times. The 𝑀𝑒 is added as an additional 
bias parameter in the Weibull model as 

𝑀 = 𝑀𝑒 + (𝑀0 − 𝑀𝑒)𝑒𝑥𝑝 [− (
𝑡

𝛽
)

𝛼

] (3) 

where, where 𝛽 and 𝛼 are the scale and the shape parameters, 
respectively. 

𝑀 =  𝑀𝑒 + (𝑀0 − 𝑀𝑒) exp(−𝐾𝑡) (4) 

𝑀 = 𝑀𝑒[1 − exp(−𝐻𝑡)] (5) 

Where, 𝐾 and 𝐻 are the kinetic constants of the first order 
kinetic model and exponential association equation, 
respectively. 

2.4 Chebyshev network model 

The nonlinear generator polynomials with recurrence relations 
can produce enough polynomial functions to represent any 
nonlinear function. Some of the polynomials are orthogonal 
with a weighting function in a defined interval. The orthogonal 
basis function sets are accepted and proved as an universal 
function approximator basis [28] with promising function 
approximation abilities [29] and thus, any analytical function 
might be approximated by orthogonal basis functions with very 
small approximation or modeling errors [20]. Some of the well-
known orthogonal function sets are compared by the 
recurrence equation, completeness properties and the intervals 
of definitions in Table 1. 

Table 1. Fundamental properties of some orthogonal basis 
function sets. 

Basis 
Function Set 

Completeness 
Interval of 
Definition 

Recurrence 
Equation 

Fourier 
Series 

No [0,T] No 

Bessel Series No [0,1] Yes 
Legendre Pol. Yes [-1,1] Yes 

Chebyshev 
Pol. 

Yes [-1,1] Yes 

The orthogonality property of a polynomial function set 𝑃(𝑥) =
[𝑃1(𝑥) 𝑃2(𝑥) …  𝑃𝑀(𝑥)] is defined by the inner product of 
functions as 

∫ 𝑃𝑖(𝑥)𝑃𝑗(𝑥)𝑑𝑥
𝑏

𝑎

= {
0   
𝐾𝑖

if 𝑖 ≠ 𝑗
if 𝑖 = 𝑗

 (6) 

where, 𝑥 ∈ [𝑎, 𝑏] ∈  ℛ𝑛 and 𝑀 is the order of the polynomial. If 
𝐾𝑖  is a positively fixed constant and then the given polynomial 
basis function set is defined as orthogonal in [𝑎, 𝑏]. In addition, 
if 𝐾𝑖 = 1, then the given function set is defined as orthonormal. 
The universal approximation property of an orthogonal basis 
function sets are defined in the next theorem. 

Theorem 1[29]: Any 𝑓(𝑥) function 𝑓(. ): [𝑎, 𝑏] → ℛ can be 
approximated by utilizing 𝑃(𝑥) orthogonal basis function sets 
given as 

𝑓(𝑥) = ∑ 𝜃𝑖𝑃𝑖(𝑥) + 𝜀

𝑀

𝑖=1

 (7) 

where, 𝜀 is function approximation or modeling error, M is 
known as the number of polynomial basis functions, and 𝑃𝑖(𝑥) 
is the ith orthogonal basis function. The function approximation 
error, 

lim
𝑀→∞

∫ (𝑓(𝑥) − ∑ 𝜃𝑖𝑃𝑖(𝑥)

𝑀

𝑖=1

)

2
𝑏

𝑎

𝑑𝑥 = 0 (8) 

converges to the zero with the enough number of the basis 
functions. The 𝜃𝑖  are the weights or unknown parameters to be 
optimized. First-order Chebyshev polynomial functions are 
generated by the following recurrence equation 
𝑇𝑛(𝑥) = 2𝑥𝑇𝑛−1(𝑥) + 𝑇𝑛−2(𝑥)    0 < 𝑛 ≤ 𝑀. Chebyshev 
polynomials have first four functions as 𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥, 
𝑇2(𝑥) = 2𝑥2 − 1  and 𝑇3(𝑥) = 4𝑥3 − 3𝑥. The given Chebyshev 
polynomials are constructed as odd and even function pairs 
[30,31]. These construct an orthogonal set in [−1,1]  with 

1/√1 − 𝑥2 weighting functions. 

∫
𝑇𝑖(𝑥)𝑇𝑗(𝑥)

√1 − 𝑥2
𝑑𝑥

1

−1

= {
0     
π

2⁄
π     

𝑖𝑓 𝑖 ≠ 𝑗        
𝑖𝑓 𝑖 = 𝑗 ≠ 0
𝑖𝑓 𝑖 = 𝑗 = 0

 (9) 

When the function parameters are not given in the 
orthogonality interval, normalization process is conducted on 
the inputs. Resultantly, the output of the Chebyshev network 
model (CNM) is formulized as 

𝑦̂ = 𝜃𝑇𝜑(x) (10) 

where, 𝜃 are the weighting parameters of the orthogonal 
function set, 𝜑(x) is regressor vector of the Chebyshev 
polynomials defined as 

φ(x) = [1 T1(x1) … TM(x1) … T1(xn) …  TM(xn)]T (11) 

Where 𝑥 ∈ [a, b] ∈  ℛ𝑛, 𝑀 is the number of Chebyshev 
polynomials and n is given as the number of the inputs. 

2.4.1 Enhanced Chebyshev network 

The conventional Chebyshev network is enhanced by using a 
feature-extraction layer as shown in Figure 1. The input data is 
passed through a weighting matrix which is a random 
parameter matrix and determined by well-known random-
learning strategy. The random-learning strategy of parameters 
was already proposed and used for extreme learning machines 
[32] which is here adapted for feature extraction. The feature 
extraction matrix adds noise effect and provides regularization 
for tuning of robust parameters. Mathematically, the weighting 
matrix transforms the input data to an extended feature space 
where the features can easily be discriminated by a decision 
layer. Therefore, feature extraction matrix can also be 
considered as a distance matrix in metric learning [33]. In the 
design stage of feature extraction matrix, there is used a 
random assignment loop then for each assigned feature 
extraction matrix, the output parameters are optimized, and 
training performance is recorded. After many training steps, 
optimal output weighting parameters are recorded. These 
parameters are corresponding to the best training performance 
and used to obtain testing performance. By doing that the 
optimal parameters are to be tested via completely unknown 
data which is important for the generalization capability of the 
designed artificial model. 
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Figure 1. Enhanced Chebyshev network model. 

3 Optimization and performance of the models 

This section presents the optimization method and 
performance criteria of the polynomial models. 

3.1 Parameter optimization 

The designed regression models are here basically nonlinear 
models that perform a nonlinear static mapping. For a general 

regression function𝑦̂ = 𝜃𝑤
𝑇

𝜑(x, 𝜃𝑖), the 𝜃𝑤 and 𝜃𝑖   are 

unknown parameters to be optimized. The 𝜃0 are the output 

weighting parameters and 𝜃𝑖  are the internal parameters of the 
nonlinear functions. In this work, Levenberg-Marquardt 
optimization, 

𝜃 = (𝐽𝑇𝐽 + 𝜇𝐼)−1𝐽𝑇𝑒 (12) 

is used to optimize the unknown parameters using input-
output training data. The 𝐽 is the Jacobian matrix, 𝐼 is the 
identity matrix,  𝑒  is the batch regression error vector and 𝜇 >
0 an adjustable parameter during optimization. The parameter 
optimization of the nonlinear polynomial models is achieved 
via Levenberg-Marquardt optimization using MATLAB 
software. However, the parameters of the distribution models 
are constructed by curve fitting function of MATLAB where 
there is used maximum likelihood estimation to estimate 
parameters. 

3.2 Statistical analysis of modeling performance 

To determine the quality of fit of the kinetic models, adjusted 
root mean squared errors (RMSE) values were computed as 

𝑅𝑀𝑆𝐸 = [
1

𝑁
∑(𝑀𝑒𝑥𝑝,𝑖 − 𝑀𝑝𝑟𝑒𝑑,𝑖)2

𝑁

𝑖=1

]

1/2

 (13) 

where, Mpred,i is expressing the approximated moisture content, 
Mexp,i expresses the experimental moisture content, N is the 
number of experimental input-output values. The best model 
describing the rehydration behavior was chosen as the one 
with the lowest RMSE [34]. In addition, some statistical 
information criterion can be used to assess the designed 
models to discuss the number of the parameters and the 
modeling performance. However, the number of the 
parameters are here used in limited number and so the 
designed models are not too large models to discuss such as 
deep neural networks. Therefore, the RMSE criterion is 
determined to discuss the performance of the models. 

4 Computational results and discussions 

4.1 Distribution models 

Rehydration behavior of damson plums dried by vacuum 
drying and freeze drying methods were determined and the 

results are illustrated in Figure 2. It was observed that the 
rehydration curves of the samples obtained from both drying 
processes followed a similar trend, i.e., the amount of water 
absorbed increased with increasing time (Figure 2). However, 
the rapid initial water absorption period was continued by 
relatively slower rate in subsequent stages. Rehydration rate of 
the freeze-dried samples began to stabilize after almost 30 min 
Figure 2(a), while the rehydration rate of the vacuum-dried 
samples began to stabilize in approximately 360 min.  
Figure 2(b). 

 

(a): Freeze-dried. 

 

(b): Vacuum-dried. 

Figure 2. Rehydration behavior of damson plums at different 
temperature values. 

The high rate of rehydration in freeze-dried samples could be 
due to the numerous surface capillaries and intercellular spaces 
formed during freeze drying processing. Since the equilibrium 
was reached quickly due to the rapid filling of the free 
capillaries and cracks on the sample surface with water, the 
rehydration rate was stabilized in a short time and the sample 
regained a considerable percentage of its original moisture 
content. In vacuum-dried samples, moisture transfer was 
mostly realized by diffusion mechanism since capillaries and 
intercellular spaces were less than freeze-dried samples. The 
rate of hydration by diffusion depends on the difference 
between the saturated moisture content and the moisture 
content at a given hydration time, and this driving force 
decreases as the water absorption process progresses, thereby 
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causing a reduced hydration rate [10]. In addition, the effect of 
temperature on rehydration was investigated and it was 
determined that the rate of rehydration increased at increasing 
temperatures (Figure 2). In different studies, it has been 
emphasized that the increase in water absorption rate is caused 
by the increasing water diffusion rate due to the increase in 
temperature [35]. 

In order to formulate rehydration kinetics of damson plums, 
experimental data were fitted to four empirical models and 
model coefficients and RMSE values were given in Table 2 and 
Table 3 for freeze dried and vacuum dried samples, 
respectively. Wiebull model was chosen as the best model for 
describing the rehydration behavior having the lowest RMSE 

values for all conditions (Table 2 and Table 3). Similarly, 
different studies are available in the literature showing that the 
Weibull model well describes the rehydration behavior in dried 
products [13, 17-19]. The rate constant k1 found in the Peleg 
equation is related to the water absorption rate of the system, 
and 1/k1 is higher for the systems with faster initial rates. As 
seen in Table 2 and Table 3, k1 shows the same trend for both 
freeze-dried and vacuum-dried samples, with the fastest initial 
rehydration rate at 60°C and the slowest rate at 20°C. It was 
determined that the value of the scale parameter of the Weibull 
model (β) decreased significantly when the rehydration 
temperature increased to 60°C, where temperature has no 
linear influence on the shape parameter α (Table 2 and  
Table 3). 

 

Table 2. Kinetic model coefficients and RMSE values for freeze-dried samples. 

Temperature/Model 

25°C 45°C 60°C 

Coefficients RMSE Coefficients RMSE Coefficients RMSE 

Weibull 
α=0.641; β=3.706; 

Me= 2.88; R2= 0.988 
0.1060 

α=0.396; β=3.587; 
Me= 3.414; R2= 0.988 

0.0976 
α= 0.464; β= 1.913; 

Me= 3.241; R2= 0.983 
0.1213 

Peleg 
k1=0.722; k2=0.347; 
Me=2.975; R2= 0.980 

0.1309 
k1=0.345; k2=0.337; 
Me=3.058; R2= 0.938 

0.2183 
k1=0.281; k2=0.326; 
Me=3.162; R2= 0.953 

0.1944 

First-order 
K=0.338; Me=2.697; 

R2= 0.952 
0.2024 

K=0.666; Me=2.844; 
R2= 0.862 

0.3269 
K=0.745; Me=2.976; 

R2= 0.897 
0.2877 

Exponential association 
H=0.372; Me=2.680; 

R2= 0.942 
0.2233 

H=0.726; Me=2.833; 
R2= 0.849 

0.3420 
H=0.796; Me=2.969; 

R2= 0.886 
0.3033 

Table 3. Kinetic model coefficients and RMSE values for vacuum-dried samples. 

Temperature/Model 
25°C 45°C 60°C 

Coefficients RMSE Coefficients RMSE Coefficients RMSE 

Weibull 
α=0.483; β=408.2; 

Me=3.007; R2= 0.976 
0.0775 

α=0.467; β=494.2; 
Me=3.723; R2= 0.985 

0.0699 
α= 0.5867; β= 46.92; 
Me= 2.036; R2= 0.970 

0.0985 

Peleg 
k1=20.18; k2=0.566; 
Me=1.809; R2= 0.937 

0.1215 
k1=16.82; k2=0.481; 
Me=2.123; R2= 0.946 

0.1301 
k1=10.76; k2=0.5173; 
Me=1.976; R2= 0.967 

0.0999 

First-order 
K=0.026; Me=1.54 

R2= 0.884 
0.1653 

K=0.027; Me=1.797 
R2= 0.900 

0.1778 
K=0.042; Me=1.725 R2= 

0.938 
0.1367 

Exponential association 
H=0.029; Me=1.514 

R2= 0.869 
0.1757 

H=0.294; Me=1.778 
R2= 0.887 

0.1891 
H=0.045; Me=1.715 

R2= 0.931 
0.1447 

Table 4. RMSE performance values of the designed models on testing data. 

Model/Case 
Freeze 

25 °C 

Freeze 

45 °C 

Freeze 

60 °C 

Vacuum  

25 °C 

Vacuum 

45 °C 

Vacuum 

60 °C 

Chebyshev Network 

Model 

0.1618 

R2=0.927 

0.0521 

R2=0.914 

0.0792 

R2=0.911 

0.0460 

R2=0.813 

0.0523 

R2=0.891 

0.0495 

R2=0.851 

Enhanced 

Chebyshev Network 

Model 

0.0263 

R2=0.986 

0.0261 

R2=0.981 

0.0164 

R2=0.9344 

0.0429 

R2=0.879 

0.0320 

R2=0.964 

0.0430 

R2=0.916 
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4.2 Chebyshev network modeling 

In order to evaluate the performance of the nonlinear 
mathematical models, the collected data is randomly split into 
two parts such as training and testing. 75% of the collected data 
is used for training, 25% of the collected data is used for testing. 
The training data is used to optimize the parameters of the 
models, but the testing data is used to evaluate the performance 
of the trained model. The idea behind performance 
measurement for the testing data is a possible usage of the 
designed model for the future implementations. Note that the 
optimized parameters are accepted to be the best parameters 
of the designed models using the training data. Therefore, the 
performance values for the training part are not counted as a 
general performance of the models. Instead, the performance 
values for the testing data which is not already used for the 
model construction can be accepted as an ultimate 
performance for the used data. Therefore, in the following 
results, training performances are plotted in the Figures, but 
their performance values are not tabled. Then, the training and 
testing error bar plots are shown. As an important result of the 
modeling process, RMSE values are given to discuss in Table 4 
for the testing data. The obtained results are presented both for 
the modeling of rehydration kinetics of vacuum-dried and 
freeze-dried damson plums. Table 2, 3 and 4 show that 
enhanced Chebyshev network model was found to be the best 
performing model of the rehydration kinetics for the vacuum-
dried and freeze-dried damson plums. To exemplify the 
designed feature extraction matrices, two of them are given as 

𝐹1 = [
 −0.0021    

0.0122
−0.0004

0.0008
−0.0068
0.0011

]     𝑉1 = [
 0.645    
−0.2138
1.1318

−0.2708
   0.0956
−0.5778

] 

for freeze-dried (𝐹1) and vacuum-dried (𝑉1) at 25°C degrees, 
respectively. 

Figure 3 shows the modeling results of rehydration kinetics for 
the vacuum-dried damson plums using enhanced Chebyshev 
network. Figure 3(a) shows the modeling results of the training 
part with randomly selected twelve data points according to 
their time values. It is seen that the training results are very 
good for all temperatures with small modeling errors. The error 
values of the training part are given in Figure 3(b) as sample 
values. When they are observed in detail, the training error 
vales are large for 25 °C and 60 °C experiments. In fact, it can be 
validated from Figure 3(a) since the rehydration values are not 
smooth for 25 °C and 60 °C experiments. However, the 
variations on the training data can support better training or 
learning of the model for the testing part which is seen in 
testing RMSE values of the enhanced Chebyshev polynomial 
model. There is obtained better RMSE values for 25°C and 60°C 
experiments. The corresponding testing errors are shown in 
Figure 3(c). 

To compare the prediction performance of designed models, 
the freeze-dried damson plums with same random data indices 
are used for training and testing as in vacuum-dried samples. 
Then, there is obtained that the performance of a models is not 
permanent for all the temperatures. Therefore, by considering 
the sum of the performances for all temperatures, enhanced 
Chebyshev network model results are plotted for this 
experiment too. The modeling results, training errors and 
testing errors are shown in Figure 4, respectively. 

 

(a): Modeling results for the training data. 

 

(b): Training errors (randomly selected twelve data points). 

 

(c): Testing errors (randomly selected four data points). 

Figure 3. Modeling results of vacuum-dried damson plums 
using enhanced Chebyshev network. 
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(a): Modeling results for the training data. 

 

(b): Training errors (randomly selected twelve data points). 

 

(c): Testing errors (randomly selected four data points). 

Figure 4. Modeling results of freeze-dried damson plums using 
enhanced Chebyshev network model. 

For the modeling of the rehydration kinetics for freeze-dried 
samples, the rehydration behavior is faster than the vacuum 
dried samples. To see that the rate of the rehydration for two 
drying conditions can be seen in Figure 5 by simply calculating 
𝑟𝑎𝑡𝑒(𝑡) = [𝑦(𝑡) − 𝑦(𝑡 − 1)]/∆𝑡. However, there are obtained 
large RMSE vales at the 25 °C for all the models due to large 

change on the dynamics of the rehydration kinetics. In  
Figure 5(b) as well as the smooth change of the rehydration 
kinetics, this large change can be seen. 

 

(a) 

 

(b) 

Figure 5. Rehydration rate of dried damson plums.  
(a): Vacuum-dried. (b): Freeze-dried. 

The RMSE value represents that the modeling error per each 
data point. Therefore, based on the RMSE performance values 
in Table 3 and Table 4, the percentage RMSE values are 
calculated by Eq. [14] and given in Table 5.  

𝑀𝑆𝐸 % = 𝑅  
min (𝑅𝑀𝑆𝐸)

max (𝐷𝑎𝑡𝑎)
𝑥100 (14) 

It is seen that percentage RMSE values are the best error 
percentages on each data point for the distribution and 
Chebyshev models. According to the Table 5, maximum and 
minimum percentage values are 2.32% and 0.51%, respectively 
for the Chebyshev networks, and the maximum and minimum 
percentage values are 4.79% and 3.13%, respectively for the 
distribution models. The Levenberg-Marquardt optimization-
based Chebyshev models can represent the rehydration 
kinetics much better than the distribution models. 
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Table 5. Percentage RMSE (%) values at different 
temperatures. 

Samples 
/Model 

Chebyshev Models Distribution Models 

25 °C 45 °C 60 °C 25 °C 45 °C 60 °C 

Vacuum-
Dried 

2.32 1.64 2.06 4.19 3.58 4.79 

Freeze-
Dried 

0.93 0.84 0.51 3.74 3.13 3.75 

5 Conclusion 

This paper provided the modeling results of rehydration 
behavior of damson plums obtained by freeze drying and 
vacuum drying processes. The conventional kinetic models and 
Chebyshev network were employed to approximate the 
rehydration behavior at three different temperatures. The 
designed artificial models and featue extraction method were 
used to approximate the rehydration in training part and 
testing part of the data. Because of the rehydration process 
causes several changes in structure and composition of foods, it 
is necessary to optimize the rehydration conditions for each 
specific product. As a result, it was conducted that enhanced 
Chebyshev network was the most elegant model for modeling 
the rehydration behavior of the damson plums. The percentage 
RMSE values are acceptable for the future applications. In 
addition, its modeling performance is better than the 
conventional Chebyshev network and distribution models. It is 
thought that the experimental and modeling results of this 
study contribute the determining reconstitution properties of 
the damson plums also fruits having similar structure. Also, the 
obtained data can be used to optimize the drying conditions in 
the future to obtain the dried product with good rehydration 
properties. 
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