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ABSTRACT

In various industrial applications there is a need for higher speed, yet reliably operating rotating machinery.
A key factor in achieving this type of machinery continues to be the ability to accurately predict the dynamic
response and stability of a rotor-bearing system. This paper introduces and explains the nature of rotordynamic
phenomena from comparatively simple analytic models. Starting with the most simple rotor model that is
supported in two rigid bearings at its ends, the more redlistic and more involved cases are considered by
incorporating the effects of flexible bearings. Knowledge of these phenomena is fundamental to an
understanding of the behavior of complex models, which corresponds to the real rotors of turbomachines.
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ROTOR- YATAK SISTEMLERININ KARARLILIGI

OZET

Endustrideki cesitli uygulamalarda yiksek hizinin yanisira giivenli olarak ¢alisan dénen rotorlu makinayaihtiyag
vardir. Bu tir bir makinayl elde etmedeki anahtar fakttrin rotor-yatak sisteminin dinamik tepkisini ve
kararliligini dogru tahmin edebilme oldugu gecerliligini korumaktadir. Bu makale basit analitik modellerle rotor
dinamigi kavraminin dogasini tanistirmakta ve aciklamaktadir. Iki ucundan sabit yataklarla desteklenen en basit
rotor modeli ile baslanarak, daha gercek¢i ve daha detayli durumlar esnek yatak etkileri de katillarak ele
alinmigtir. Bu olgularin bilinmesi gergek turbomakinaarin rotorlarini temsil eden karmasik modellerin
davranisini anlamada esastir.

Anahtar Kelimeler : Kararhlik, Rotor-Y atak, Rotor dinamigi, Turbomakinalar
upon its geometry and the type of support, as well as

on the excitation forces. The vibrating rotor also
excitesits foundation.

1. INTRODUCTION

Rotating machinery, one of the most important
classes of machinery, is used extensively throughout
the industriaized world. Its uses are extremely
diverse: in power stations, aircraft engines, medical
equipment and many other applications. Indeed, it is

Failure of the machine components in applications
such as aeroengines, turbogenerators, military
equipment, space satellites and others, may put
human life in jeopardy and cost a lot of money to

difficult to think of many types of machine that do
not include rotating components in one form or
another.

In operation the rotor undergoes bending and
torsional vibration. The vibration of a rotor depends
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repair. Therefore, in the design of high-speed
rotating machinery, the following questions must be
addressed:

a) For a given running speed, what are a
rotor's natura frequencies?
b) What aretherotor's critical speeds?
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¢) What are the anticipated steady-state
response levels over the rotor's operating
range?

d) Will the rotor be stable over its operating
range?

In order to address these questions, one must
consider a complete rotordynamic model, which
accounts for the rotor's structura-dynamic plus
fluid-structure-interaction forces, seal generated
forces, external time-dependent forces, imbalance,
etc.

All rotating machinery is supported by one or more
bearings, which play avital part of the entire system,
since it is the component that permits the relative
motion between the stationary and moving parts.
There are two general types of bearings which are
commonly used in rotor-bearing system
applications. These are fluid-film bearings and
rolling-element bearings.

Bearings can have a significant effect on machine's
vibration characteristics. The fluid-film of a fluid-
film bearing acts like a spring-damper system and it
influences the machine critical speeds and imbalance
response. Moreover, bearing fluid-film forces can
cause rotor instability that result in serious levels of
self-excited vibration. Shaft seals have a similar
effect as fluid-film bearings. They influence the
critical speeds, can provide damping or on the other
hand cause instability. Instability from fluid-film
bearings and shaft seals arises from the fact that
during radia displacement of the rotor a restoring
force is produced, which has a component at right
angles to this displacement.

Extensive studies of the rotor-bearing system over a
long period of time have resulted in a good
understanding of the forces induced by bearings.
These studies have been incorporated into codes,
which are used to design rotor systems, see for
example (Szeri, 1980; Szeri, 1987; Childs, 1993;
Kramer, 1993). In addition many theoretical studies,
numerical calculations and measurements have been
carried out to determine the effect of self-exited
vibration in the turbomachinery due to shaft seals,
see for example (Childs and Scharrer, 1988; Eser
and Kazakia, 1995; Y ucel, 2000; Kwanka, 2001;).

Here, we don’t intend to consider the subject of the
effects of the fluid-film bearings and shaft seals on
the stability of rotors. More information about these
subjects can be obtained at (Childs, 1993;
Kramer, 1993).

In practice, instability must be avoided and one must
know as much as possible about the conditions and

about behavior during instability. Therefore, in the
following sections the stability of rotor-bearing
systems is considered. Starting with the most simple
rotor model that is supported in two rigid bearings at
its ends, more realistic and more involved cases are
considered by incorporating the effects of flexible
bearings.

2. STABILITY CONSIDERATIONS OF
ROTOR-BEARING SYSTEMS

The material in this section is given to introduce and
explain the nature of rotordynamic phenomena from
comparatively simple analytic models. The
phenomena demonstrated by flexible rotors and
techniques employed for their analysis is basicaly
similar to other areas of vibrations and structural
dynamics.

The vibration problems can be represented by the
equation of motion

MX +CX + KX = F(t) (1)

The simple harmonic vibration of the rotor is

described with the terms MX and KX of the above
equation. Damping, either from the structure of the
shaft or from the bearing structure is characterized

by the term CX. Imbalanced rotor effects are
described by the forcing term F(t) on the right hand

side. Flexible bearings, hydrodynamic bearings and
gas sedls introduce terms of theform KX and CX .

The complete solution of Egn. (1) consists of the
solution of the homogeneous equation together with
the particular solution corresponding to the right-
hand side. Solution of the homogeneous equation
requires the eigenvalues of the system to be found.
These are conjugate complex or real and
characterize the natural vibration. The imaginary
part corresponds to the natural frequency in question
and the rea part gives the stability of the natural
vibration. For a negative real part, the vibration
decays with time that means the system is stable,
and for positive rea part it grows which meansit is
unstable. The stability boundary of the system is
reached when the real part of an eigenvalueis zero.

In the next two subsections, we consider simple
rotor modelsto study their stability. The basic model
used in this work is the Jeffcott rotor (Kramer,
1993). With this ssmple model most of the important
results can be shown and explained analytically.
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2. 1. Jeffcott Rotor With Rigid Bearings

The most ssimple rotor model consists of a heavy
disk of mass m mounted at mid-span of a massless
elastic shaft. The shaft is supported in two rigid
bearings at its ends as shown in Figure 1. This model
is caled a Laval shaft or Jeffcott rotor (Rao, 1983;
Goodwin, 1989; Childs, 1993; Kramer, 1993). The
shaft has a circular cross-section with constant
diameter over its whole length and turns with
constant angular velocity .

2
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Figure 1. Schematic of Jeffcott rotor with rigid
bearings

The mid-span disk has a center of mass that due to
unbalance is at a point G, a distance e from the
geometrical center (disc center) O; this distance is
known as the eccentricity. The disk is assumed to
move only in its own plane, more precisely in the
plane defined by axis 1, 2 in Figure 2. The
coordinates y,, Yy, give the movement of the shaft

center O relative to the unloaded position and the
angle turned through by the disk isgiven by ot .

> 1

Figure 2. Assumed movement plane for the disk

The position of the midpoint G is determined from
the equations

)

The equations of motion for the mass-center G can
be obtained by using Newton's law as

where k, is the shaft-stiffness coefficient and d is

the damping coefficient. Substituting the second
derivatives of Egns. (2) into Egns. (3), the following
equations are obtained

my, +dy, +K,y; =emo? cosot @
my, +dy, +k,y, =emo’sinot
We first consider an ideally balanced disk that is for
e=0 the problem becomes very simple, as then the
angle of rotation of the disk is independent of its
displacement. Thus, for free vibration of the Jeffcott
rotor Egns. (4) become

my; +dy; +k,y; =0

. : : S
my,+dy,+k;y, =0
The solutions to Egns. (5) can be obtained as
y1(t) =€ (A, coswgt + By sinwgt) ©®)

y,(t) =€ (A, cosogt + B, Sinwgt)

where  §=d/2m and o4= 02 -8° with the

natural frequency o, =4k,/m. In Egns. (6), the
coefficients A;, A,, B; and B, arerea constants.

Equations (6) describe the path of the shaft center O
in the 1-2 plane during free vibration, which is
caled natural motion. With zero damping this
natural motion consists of harmonic vibrations in
directions 1 and 2 with natural frequency @p,. With

damping the natural motion is similar to that without
damping, except that the amplitudes decrease with

time by the factor e ot

If we consider the case of unbalance excitation that
is ex0, the particular solutions of the Egns. (4)
become
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y,(t) =rcodot—¢)

y,o(t) =rsin(ot—¢) U

Where the whirl amplitude 1 at the disk is defined
by r=eV'(n) with

2

V() = ] ,

J@-n?)2 +(2Dn)? (®)
n=o/o,, D=d/(2mo,)
and the phase angle ¢ is defined by

€= arctan( ZDT]ZJ_ From Eqgns. (7), it is seen that

the shaft center moves with angular velocity @ ina
circle of radius . The angle between I and e
remains constant.

The characteristic of the whirl amplitude
V'(n) =r/e versus excitation frequency ratio n for

various values of the damping ratio D is shown in
Figure 3. For smal damping ( D<<1), the
maximum whirl amplitude is given to a good
approximation by V|, ~1/(2D). The angular
velocity at the maximum value is called critical and
is usualy assumed to be smplified to w¢ = @y, .
Correspondingly, the critical speed of the Jeffcott
rotor is n, =, /(2n).

4

Figure 3. Dynamic magnification of rotor whirl
amplitude as afunction of speed for rigid bearings

For an undamped rotor, we notice from Figure 3 that
resonance occurs when @ = @p, . Hence, the rotor

whirls with large amplitudes at resonance with the
natural frequency of the stationary shaft in lateral
vibration and hence this speed is called the "critical
speed” of the rotor. For the Jeffcott rotor model, the
rotor's critical speed is indistinguishable from its
natural frequency; however, this is not generally the
case.

In summary, the following conclusions can be drawn
from Figure 3: First of all, at driving force of lower
or higher speed, the amplitude response is much
smaller. But, when the running speed is equal to the
natural frequency of the system, the amplitude is
magnified. Theoretically, the amplitude can build up
to infinite values. The only thing that prevents this
build up is damping. In other words, when operating
at or near critical speed, damping is the only way to
control the amplitude of vibration.

2. 2. Jeffcott Rotor with Flexible Bearings

In the previous subsection the bearings supporting
the rotor have been assumed to be rigid. However,
the bearings of real shafts are more or less flexible
and have their special dynamic characteristics. But,
these will not be investigated here in details. More
detailed information about the dynamic
characteristics of bearings can be found at
(Szeri, 1980; Childs, 1993; Kramer, 1993).

In this subsection it will smply be assumed that a
bearing can be replaced by massess springs in two
mutually perpendicular radial directions (preferably
horizontal and vertical) as shown in Figure 4. The
two bearings have equal pairs of stiffnesses in
directions 1 and 2, respectively (as shown in
Figure 5).

When k; #k,, the bearing is referred to as
anisotropic. Using k, as the stiffness of the shaft

with stiff bearings, the total stiffness of the system
of shaft and bearings, in directions 1 and 2, is

K k
K= K,=— T 9
Y1k, /(2k) 7 14k, /(2ky) ©

Hence, the equations of motion for the Jeffcott rotor
with flexible bearings become

my, +dy, +kjy,; =ema? cosmt

2. (10)
my, +dy, +kby, =emo“sinot

The particular solutions of the above equations can
be found as
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yi() =¥, cos(o;t - 51)

. 11
ya(t) =¥, sin(ot-¢,) )
Where y; =eV/(n) with

2
vi’(ni)=¢1 - Zm =
(L-n{)+(2Din;) (12)
i =o/o;, o= 2; o
nl - (I I~ kr +2k| n
and
o9
2m(0i
(13

FlexibleBearings

Figure 4. Schematic of Jeffcott rotor with flexible
bearings

24
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Figure 5. Bearing stiffnesses in directions 1 and 2

Accordingly, the disc center undergoes harmonic
motion in directions 1 and 2, under the action of
unbalance excitation, with a frequency equal to the
shaft frequency and amplitudes y;, and y, whose

character correspondsto V'(n) in Figure 3.

The characteristic of the whirl amplitudes V/(n)
versus excitation frequency ratios m; for damping
ratios D; =0 is shown in Figure 6. The plot is for
k, =05k, and k,=2k,. Because of different
stiffnesses the shaft has two natural frequencies
®1, ®, that is two critical speeds n;, n,. At the
critical speeds the amplitude builds up to infinite
values because of zero damping factor. The
maximum amplitudes for small damping (D; <<1,

i=12) are V| a ~Y(2D;).

19

1, = ofo,

Figure 6. Dynamic magnification of rotor whirl
amplitude as a function of speed for flexible
bearings

With rigid bearings, the disc center describes acircle
in plane 1-2 as discussed before. Thisis also the case
for isotropic flexible bearings with k; =k, , where

Y,=y, and g,=¢,. With anisotropic flexible
bearings, that is k; # k,, the path of the disc center
is, in general, an ellipse whose shape and major axis
direction depends on the shaft speed. Figure 7 shows
the orbits of the shaft center O with some external
damping force D=0.1 for k;=0.5k,, k, =2k, .
Here the eliptical orbit is roughly horizontal in the
region of first critical speed ( n; ~ ®,/(2n)), and
roughly vertical in the region of second critica
speed (n,~w,/(2r)). For the values
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of 1.04n, and 0.96n, the orbit degenerates to a

straight line. Below and above these speeds the
direction of rotation of the orbit is the same as for

the rotational speed of the shaft that is forward
whirl. Between these values it is in backward whirl.

/A MN YA\ YA\
— 7 A
— | )
B St B O R/ /NN
a)@ D)
0.9n, n 1.04n, 1.13n, 0.96n, n, 1.1n,
>« >«
Forward Whirl Backward Whirl Forward Whirl

Figure 7. Orbits of the disk center O

3. CONCLUSIONS

In this study the model of Jeffcott rotor was used
from which the most important phenomena
encountered in rotordynamics were presented.
Knowledge of these phenomenais fundamental to an
understanding of the behavior of complex models,
which corresponds to the real rotors of
turbomachines. For a full rotordynamic analysis the
forces due to the bearing fluid-structure-interaction,
shaft seals, turbines and pump impellers must be
included.
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