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PORTFOLIO OPTIMIZATION WITH GRAPHICAL LASSO AND 
AN APPLICATION IN BORSA ISTANBUL

GRAFİKSEL LASSO İLE PORTFÖY OPTİMİZASYONU VE BORSA İSTANBUL’DA 
BİR UYGULAMA

Erhan USTAOĞLU 1

*

Abstract
Graphical Lasso (Least absolute shrinkage and selection operator) has become a popular tool in the field of 

machine learning in recent years. Although it has been deployed mainly for feature selection in classification 
problems, it is also used for covariance matrix estimation. Mean-variance portfolio optimization relies on sample 
covariance matrix for the calculation of the portfolio’s risk, whereas it has been most hardly criticized. The aim 
of this study is to demonstrate the effect of the covariance matrix estimation by Graphical Lasso algorithm 
with varying L1 penalty factors. Mean-variance portfolio optimization using empirical and estimated covariance 
matrices are applied to BIST 30 index and the results are compared.
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Öz

Grafiksel Lasso (least absolute shrinkage and selection operator) algoritması son yıllarda makine öğrenmesi 
alanında popüler bir araç oldu. Genel olarak sınıflandırma problemlerinin özellik seçimi için kullanılıyor 
olsa da aynı zamanda kovaryans matris tahmininde de başvurulur hale geldi. Ortalama-varyans portföy 
optimizasyonu, portföy riskinin hesaplanmasında tarihi verilerden yararlanılarak oluşturulan kovaryans 
matrisini kullanmaktadır. Bu aynı zamanda ortalama-varyans portföy optimizasyonu metodunun en çok 
eleştiri aldığı konudur. Bu çalışmanın amacı farklı L1 ceza faktörleri kullanarak grafiksel Lasso algoritmasının 
kovaryans matris tahminine ve bunun portföy optimizasyon performansına olan etkilerini göstermektir. 
Çalışmada ortalama-varyans portföy optimizasyonu amprik ve tahmini kovaryans matrisleri kullanılarak BIST 
30 endeksine uygulanmakta ve sonuçlar karşılaştırılmaktadır.
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Portfolio Optimization with Graphical Lasso and An Application in Borsa Istanbul 

1. Introduction

Mean-variance portfolio optimization, though nearly 70 seventy years old, is still widely used 
by finance professionals and academics throughout the world (Markowitz, 1952). Yet it is one of the 
most criticized financial methods from many aspects (Kolm, Tütüncü, & Fabozzi, 2014). Mean-va-
riance portfolio optimization is a trade-off between portfolio risk and portfolio return. One of the 
most criticized points in the method is the estimation of the covariance matrix, which the method 
uses for the calculation of the portfolio risk. The true relationships between the assets, which make 
up the portfolio, should be known or somehow guessed for the exact calculation of the portfolio risk. 
However, this is practically almost impossible when the number of assets in a portfolio are high, es-
pecially in volatile markets. Instead, historical price movements are employed for the calculation of 
covariance matrix hence, the portfolio risk. But this leads to severe estimation errors especially when 
the number of sample data are not at least an order greater than the number of assets in the portfo-
lio (Ledoit & Wolf, 2003). Moreover, estimation errors are maximized by the mean-variance method 
(Michaud, 1989). As a result, some of the assets in the portfolio may be overweighted, and some ot-
her may be underweighted which leads to poor out-of-sample performances. De Miguel et al. (2009) 
showed that even equally diversified portfolios can outperform mean-variance optimized portfolios 
in practical applications. Some methods have been proposed to overcome the errors incurred in the 
estimation of the portfolio risk. Shrinkage estimators have been widely used for reducing the esti-
mation errors in covariance matrix. Ledoit and Wolf (2004) suggested an estimation method using a 
weighted average of the sample covariance matrix and a structured estimator, which assumes all the 
variances to be the same and all the covariances to be zero. Bai et al. (2009) used large-dimensional 
random matrix theory for combining sample covariance and the estimators. Bodnar et al. (2014) pro-
posed a more general linear shrinkage estimator utilizing a symmetric positive definite target mat-
rix. An optimal expected gain/loss estimator was also proposed using shrinkage covariance matri-
ces (Liu et. al, 2016).

Lasso was proposed to improve the prediction accuracy and the interpretation of the ordinary le-
ast square regression (Tibshirani, 1996) and became one of the widely applied models in the field of 
machine learning in 1990s together with neural networks and support vector machines. Since it ca-
uses the solution to be sparse, it is used for mainly feature selection (Perrin and Roncalli, 2019). The 
model has been used in numerous applications ranging from NLP (Loukina et. al, 2015) to seismo-
logy (Kiani et. al, 2019). It was also shown that Lasso worked better compared to Ridge and ordinary 
least square regression with simulated and real data (Muthukrishnan and R. Rohini, 2016). Friedman 
et. al (2008) proposed a fast algorithm for the solution of sparse graphical models. The algorithm 
used L1 (Lasso) penalty for the estimation of sparse inverse covariance matrix multivariate Gaussian 
distribution. This simple and fast algorithm facilitated the solution of the large data problems which 
involve sparse covariance or sparse inverse covariance procedures. As mean-variance model calcu-
lates portfolio risk through covariance of assets included in the portfolio, graphical Lasso has found 
applications in this field recently (Avagyan et. al, 2017; Yuan et. al, 2020). However, deployment of 
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graphical Lasso algorithm in Turkish financial markets for portfolio optimization has not been stu-
died yet. This study aims to demonstrate the effectiveness of the Lasso algorithm in portfolio optimi-
zation for Turkish financial markets and to provide academicians and financial professionals with an 
insight into the subject. For the application, a portfolio optimization problem in BIST 30 is conside-
red. The covariance matrix is estimated by graphical Lasso algorithm and the results are compared 
with that of using the sample covariance.

2. Methodology

Mean-variance portfolio optimization, Sharpe ratio which is used as the optimization objective 
function and the graphical Lasso algorithm are defined in the following sections.

2.1. Mean-Variance Optimization

Mean-Variance optimization proposed by Markowitz (1952), seeks the minimization of the risk 
of a portfolio given a level of expected return or the maximization of the expected return given a le-
vel of risk. The expected return and the risk of a portfolio are defined as:
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where 𝒘𝒘𝑻𝑻𝟏𝟏" = 1 reflects the no short selling condition which is a common practice in 
theoretical portfolio analysis. Another alternative for the optimization of the mean-
variance problem is using the Sharpe ratio (Sharpe, 1966) in the objective function as  
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which is used in this study. 

2.2 Graphical Lasso Algorithm 
Assuming we have N samples from p multivariate Gaussian distributions with 

mean 𝜇𝜇 and covariance  𝛴𝛴, then the inverse covariance matrix  𝛴𝛴#$  can be estimated by 
maximizing the multivariate loglikelihood function as  
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where 𝑡𝑡𝑡𝑡(𝑺𝑺𝑺𝑺#$) denotes trace of the product of the matrices, 𝑺𝑺 is the sample covariance 
matrix and ‖𝜮𝜮#$‖$ is the sum of the products of the absolute values of the elements  𝜮𝜮#$ 
and  𝜌𝜌 is the 𝐿𝐿$ penalty factor (Friedman et. al, 2008). 

3. Application in BIST 30  
Daily return values BIST 30 stocks between 01.01.2018 and 31.12.2019 (512 daily 

returns for 30 stocks) are considered for the application. Employing mean-variance 
optimization seven different portfolios are obtained for which the Sharpe ratio is used in 
the objective function for the maximization. The first portfolio is constructed using the 
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and the number of stocks with portfolio shares different than zero are listed in Table 1. All of the 
portfolios with Lasso penalties, which are higher than zero, have better Sharpe ratios than that of 
sample covariance matrix. Moreover, as the sparsity ratio decreases, Sharp ratio increases that me-
ans a higher expected return for the risk incurred. Meanwhile the number of stocks in the port-
folio increases too, meaning a better diversification. This behavior addresses the criticism against 
the mean-variance portfolio model that the model overweights some of the assets in the portfo-
lio, which in turn causes poor out-of-sample results. These results indicate a concrete improve-
ment in the portfolio optimization performance when the graphical Lasso is used for covariance 
matrix estimation.
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