
Journal of Emerging Computer Technologies
Research Article

Received: 2021-08-20 | Reviewing: 2021-08-23 & 2021-09-15| Accepted: 2021-09-18 | Online: 2021-09-18 | Issue Date: 2021-12-31

Cite (APA): Batar, M., Birant, K.U. (2021). Development of an Efficient Tool to Convert Regular Expressions to NFA. Journal of Emerging Computer

Technologies, 1(2), 38-43.

Volume:1, No:2, Year: 2021, Pages:38-43, December 2021, Journal of Emerging Computer Technologies

38

Development of An Efficient Tool to Convert

Regular Expressions to NFA

Mustafa Batar

Department of Computer Engineering

Burdur Mehmet Akif Ersoy University

Burdur, Turkey

mbatar@cs.deu.edu.tr

0000-0002-8231-6628

Kökten Ulaş Birant

Department of Computer Engineering

Dokuz Eylül University

İzmir, Turkey

ulas@cs.deu.edu.tr

0000-0002-5107-6406

Abstract—In the computing theory, while the term

“Language” specifies the string set, the term “Regular

Expressions” means the notation that builds, creates and

generates these languages. Also, the term “Regular

Expressions” creates the characters that structure and compose,

which refers to the given strings, in order to search patterns for

sample matching. In this context, this article tries to show how

to convert “Regular Expressions” that is made up of characters

into Nondeterministic Finite Automata (NFA), which is a

character matching and character searching tool, by giving

related algorithms and methods with their explanations in

detail. Moreover, in this study, a new and efficient tool has been

designed and developed in order to convert regular expressions

to NFA. By the contribution of this application, an original

conversion tool will have been gained in the computation area

for benefiting it. As a natural result of this, an original NFA

modelling tool will have been placed in the literature.

Keywords—Computing theory, regular expressions, NFA,

modelling.

I. INTRODUCTION

Today, humanity is in the middle of the information age.
However, this age encompasses an intellectual power rather
than a physical one. For the past 25-30 years, information
technology has played a very important role in the world. But
what this power can do is not yet known to us. If looked at the
1950s, only some of the people kept diaries, but now; most
people post everything from international political events to
their pet’s favorite toy on their personal pages online for all to
see. But still, for some reason, people still hold on to the idea
that the concept of computation: numbers or punctuation or
something like that [1].

Although the concept of computation does not only belong
to the numbers or punctuation marks, the meaning of this
concept is still not clearly and unambiguously known. Almost
every person in the world thinks that if a person is dealing with
accounting, s/he accepts that s/he is doing calculations.
However, many also have different opinions about whether
the brain is a computer or something else. If the brain is a
computer, it turns out that all the thoughts are computations
and all computations are thoughts. It is also known that; the
virtual world in computer games is a reflection of the real
world that has emerged as a result of calculations. Thus, a
dilemma arises as to whether the real universe is a computer.
This dilemma is addressed the question into mind: “If the
universe is a computation, then what is not computation?” [1].

About 100 years ago, most people in the world thought
that computing was a mental operation involving numbers,

and therefore it was believed that information counting could
only be performed by humans. But today, it is thought by the
vast majority that the computation can only be performed by
machines. In Western culture, the thinking capacity of humans
is considered as the most important factor that distinguishes
humans from animals. Also in this culture, private thoughts
and feelings are considered as the main factor for the
formation of personal identity. For this reason, thought or
thinking is believed to be necessary both for living together
and for personal development. It is pointed out that changes in
ideas about the meaning of the concept of computation also
cause changes in thinking and ideas about humanity. This
reflects the change in concepts such as culture, excitement,
anxiety or virtual. Despite hundreds of known articles and
researches about the concept of computation so far, what this
concept exactly is still preserves and continues to be
confidential and its mystery [1].

II. RELATED CONCEPTS

A. Automata Theory

The related theory is a developmental process that
emerged to attract and distinguish people from a particular
type of computer or a particular programming language. In
automata theory, the emphasis is on the mathematical example
of the concept of computation. In the theoretical sense; since
it is easier to control and direct the machines mathematically,
this theorem on automata creates a model, brings the
computational mechanisms or machines to the simplest and
plainest level, and reveals the bareness of these machines in
order to demonstrate and also to prove the capacities of these
machines [2].

The mathematical models are generally not suitable or not
useful for solving practical programming problems. Real
programming languages are better suited and more convenient
for solving these problems. Although these programming
languages are easy to use, it is rather difficult to evaluate them
in a particular format. Theoretically, the main idea, that the
relevant machines are designed from top to bottom to be made
the simplest and mathematically operable, should definitely
not to be forgotten [3].

B. DFA – Deterministic Finite Automata

The related automata is a finite state machine that accepts
or rejects a certain number of strings, and in automata theory,
determines a single computational or run-automation for each
string input. The concept of “deterministic” means that the
computation is unique and only one. When looked at the
previous studies and researches in order to understand better

Journal of Emerging Computer Technologies
Batar and Birant

Volume:1, No:2, Year:2021, Pages:38-43, December 2021, Journal of Emerging Computer Technologies

39

the concept of “Deterministic Finite Automata (DFA)”, it is
seen that “McCulloch” and “Pitts” were the first researchers
to put forward a concept similar to finite automation in 1943
[4].

DFA is defined as an abstract concept related to
mathematics, but since it is “specific”, “deterministic” and
“certain”, it has a structure and feature that can be applied and
used in both software and hardware for solving various
problems. For example, by means of a DFA, a software
application can be modeled that reveals whether the entered e-
mail addresses are valid or not. It can also identify and reveal
a regular set of languages that help to do lexical analysis and
pattern matching. With the help of various algorithms,
transformation from nondeterministic finite automata to
deterministic finite automata can be performed, carried out,
and implemented [5].

C. NFA – Nondeterministic Finite Automata

The relevant automata is a generalized version of the
deterministic finite automata defined above – DFA. In
nondeterministic finite automata, there may be zero, one, or
more connections between each state. In this automaton, if
there is more than one connection coming out of a situation, it
means that the branch is divaricating, but if this branch does
not have any valid connections, this branch disappears, that is,
it dies [6].

If the given input character string reaches the acceptance
state, the NFA accepts this character string set, but if it does
not reach the acceptance state at all, it rejects that string set. In
this automaton, a single accept condition is sufficient, but for
a reject condition all branches have to reject the character
input string. This mechanism, which is carried out, is called
the modeling of the computational concept [7].

D. Regular Grammar

Related grammar defines regular languages, and also has
a specific format. If a grammar has one of the following forms,
that grammar is regular, but if it does not, that grammar is
irregular (not regular) [8] as defined below:

S ε | S w | S T | S wT

w: is any terminating character in a regular expression that
cannot be defined as a null character.

T: is any character that will not terminate a regular
expression.

The most important aspect of establishing grammar is to
have the knowledge and information underlying the language.
It should not be assumed that a language will have only one
grammar because more than one grammar structure of the
same language can be created and installed. The following
table – Table 1 – shows the grammar structure of various
languages. In this table (Table 1), each regular language is
represented with the contribution of regular expressions [8]:

TABLE I. REGULAR EXPRESSIONS AND REGULAR GRAMMAR

Regular expressions Regular grammar

a* S ε | aS

(a+b)* S ε | aS | bS

a*b S b | aS

(ab)* S ε | abS

ba*
S bA

A ε | aA

E. Regular Language

It is a language with the alphabet “Σ”, and as a concept, it
has emerged as the constant repetition of the following
features and characteristics [9]:

The empty set “Ø”, which is an empty language, is also a
regular language.

A single letter (character) belonging to the alphabet is also

a regular language (“a” ∈ Σ).

If languages “A” and “B” are regular languages, then the
set “AUB” (union operation), set “AoB” (concatenation
operation), and set “A*” (star operation) are also regular
languages.

F. Regular Operation – Union Operation

Union operation takes all the sequences of the regular
languages “A” and “B”, and combines these sequences into a
new language [10].

AUB = {x | x Є A V x Є B}; A = {hot, cold} and B =
{woman, man}; then AUB = {hot, cold, woman, man}

G. Regular Operation – Concatenation Operation

Concatenation operation connects the beginning of the
string of the regular language “B” to the end of the string of
the regular language “A” [10].

A o B = {xy | x Є A Λ y Є B}; A = {hot, cold} and B =
{woman, man}; then AoB = {hotwoman, hotman,
coldwoman, coldman}

H. Regular Operation – Star Operation

Star operation applies to a single regular language, and
adds any number of strings of that language together to
assemble them into a new regular language [10].

A* = {x1x2…xk | k is positive integer Λ all xi Є A}; A =
{hot, cold}; then A* = {Ø, hot, cold, hothot, coldcold,
hothothot, hotcoldhot,...}

İ. Regular Expressions

It is the sorted form of the characters that make up the
search pattern, and used to make pattern matching with the
given character strings. In regular expressions, each character
either contains its own lexical meaning or is at the meta level
and expresses a meaning other than itself. Also, regular
expressions can easily reveal the textual meaning of the given
sample pattern, and adhering to this meaning, can develop
multiple examples that are exactly similar to this model. In
addition, regular expressions plays an important role in
designing automations for processing text files, creating and
developing specified text formats, and receiving arbitrary
string inputs [11].

The regular expressions processor reveals regular
language information that is used to describe regular
languages. There is a separate grammar and syntax for each
regular language, and accordingly, a separate development
system for each regular expression. Moreover, regular
expressions operators compile the codes given to them, test
the target character string, split it into smaller strings, and
reveal whether that string belongs to the regular languages
given to them. Furthermore, regular expressions have a very
important place in the computational world because they
create a common criterion in computation. For this reason,
systems of regular expressions introduce basic and secondary

Journal of Emerging Computer Technologies
Batar and Birant

Volume:1, No:2, Year: 2021, Pages: 38-43, December 2021, Journal of Emerging Computer Technologies

40

criteria for grammar and syntax. Also, regular expressions
operators can be found and included in various search engines,
some text editors, some search and replace word dialogs, as
well as various scripted text compilers [12].

III. RELATED ALGORITHMS AND METHODS

Under this title, 6 main algorithms and methods –
McNaughton and Yamada’s Algorithm, Glushkov’s Method,
Thompson’s Algorithm, Berry and Sethi’s Algorithm, Chang
and Paige’s Algorithm, and Antimirov’s Method – that
convert and transfer regular expressions to nondeterministic
finite automata (NFA) in the field of automata theory have
been tried to be explained in detail.

A. McNaughton and Yamada’s Algorithm

This method is an algorithm that is used to extract state
graphs from regular expressions and has a high applicability.
While applying this algorithm, fewer states than “2P+1” are
generally needed and the working time of this method is at
most “Θ(m|x|)”. (m = Ω(s2) – the highest possible number of
connections in the state graph. s: number of alphabetic
characters in regular expressions. x: bit vector.) To understand
this method better and more clearly, be useful to look at the
example in the following [13].

Let “P = 1(00U01)*0”. In this expression, there are six
positions, respectively: 11, 01, 02, 03, 12, 04. If “P” is rewritten
with its positions, it becomes “11(0102U0312)*04”. {11} is the
starting state of “P” while {04} is the ending state of “P”.
When creating the state graph, the first thing to do is to
consider the initial state. Next, it is decided which state this
initial state will combine with according to the given input:
where to go in the “0” input character or where to go in the
“1” input character. The initial state in this example goes to
{11} state at input “1” and Λ – empty – state at input “0”. If a
state falls into this empty state, the automation will never be
able to get out of this state, which is why it is called a “dead
state”. Continuing, {11} will be in the {01, 03, 04} state when
the input “0” comes in, and “dead state” when the input “1”
comes in. {01, 03, 04} becomes {02} when “0” is input, {12}
when “1” is input. It goes to {01, 03, 04} state when the input
“0” comes to the {02} state, and goes to the “dead state” when
the input “1” comes. Also, state {12} has the same properties
as state {02} in terms of inputs and destinations. The created
nondeterministic finite automata (NFA) in the light of this
information is demonstrated in Figure 1 [13] in the following.

Fig. 1. NFA with McNaughton and Yamada’s algorithm in the example.

B. Glushkov’s Method

This method – also known as Glushkov’s automation –

transforms regular expressions to nondeterministic finite

automata (NFA) using the subset construction algorithm.

This algorithm creates a route path by matching the given

string of characters with regular expressions with automation

mechanism. It is decided how the states of this automation

will be connected to each other with the help of this route.

This algorithm uses a function on the nodes of regular

expressions. With the contribution of this function, it reveals

the empty and branching states in the automation, and thus all

the necessary connection forms for a certain finite automata

are revealed. Also, this method makes a complete

transformation for NFA by including initial, acceptance and

rejection states, and by eliminating redundant states in this

automata [14].

C. Thompson’s Algorithm

It is a method, also known as Thompson’s configuration
[15], which is among the algorithms that converts regular
expressions to NFA. This algorithm breaks regular
expressions into smaller regular expressions, and transforms
these regular expressions into nondeterministic finite
automata, and then combines these automata to produce the
first given regular expressions translated into NFA. In
addition, with this method, each character in the regular
expressions is taken and tested in the order of their occurrence
and transferred to the nondeterministic finite automata, thus
avoiding the errors that may arise in the connections between
the states and the route path. Also, this method starts parsing
and splitting regular expressions from the left side and
continues parsing and shredding in this way until the regular
expressions are completed. In the Thompson’s algorithm, the
number of states is between “r-s()+1” and “2r”, and the
number of connections is between “r-s()” and “4r-3”. (r: the
length of the regular expressions. s(): number of parentheses
in the regular expressions.) However, this method’s runtime is
up to maximum “O(r)” [15].

Based on the Thompson’s algorithm, union operation is
given in Figure 2, concatenation operation is demonstrated in
Figure 3, and also star operation is shown in Figure 4 in the
following.

Fig. 2. Union operation based on Thompson’s algorithm.

Fig. 3. Concatenation operation based on Thompson’s algorithm.

Journal of Emerging Computer Technologies
Batar and Birant

Volume:1, No:2, Year:2021, Pages:38-43, December 2021, Journal of Emerging Computer Technologies

41

Fig. 4. Star operation based on Thompson’s algorithm.

D. Berry and Sethi’s Algorithm

This method is an algorithm that allows each symbol in

regular expressions to appear in automation. The chart below

(Figure 5 in the following) is an example of this algorithm,

and reflects the regular expression “(a1b2+b3)*b4a5”. In the

automation built with this algorithm in the following figure

(Figure 5), the “C” state has connections derived from the

“C” state under certain and particular symbols and characters.

While creating this automation, each link derived from each

state is labeled with the same symbol. For this reason, all

sequences of the automation derived from the “C3” initial

state have to also be in the “wb3” format. Thus, it turns out

that the automation of regular expressions derived from the

initial state “C3”, and the automation of regular expressions

derived from the initial state “C0” are the same. In the Berry

and Sethi’s algorithm [16], the number of states in the

nondeterministic finite automata (NFA) is maximum “s+1”

and the working time of this algorithm is maximum “O(r)”.

(r: the length of the regular expressions. s: the number of

alphabetic characters in the regular expressions.)

Fig. 5. NFA for the regular expression “(a1b2+b3)*b4a5”.

E. Chang and Paige’s Algorithm

This method generates the transformation from regular
expressions to NFA in the same asymptotic time as with Berry
and Sethi’s algorithm – “Θ(m)”. However, it is a method that
has improved the auxiliary memory – the amount of “Θ(s)” –
held in the memory of Berry and Sethi’s method (s: the
number of alphabetic characters in the regular expressions)
[17].

The McNaughton and Yamada’s algorithm lacks the
number of connections between states in automation. Because
if it is taken the worst case, the number of connections is “m
= Θ(s2)”. Also, if it is taken the expression “s()” as the number
of parentheses (right or left), Thompson’s nondeterministic
finite automata (NFA) is the case between the numbers “r-
s()+1” and “2r”, as well as it has a connection between “r-s()”
and “4r-3” (r is the length of the regular expressions.). For

these reasons, a new compressed data structure has emerged –
“Compressed Nondeterministic Finite Automata: CNNFA”.
This structure transfers regular expressions to a NFA
occupying “Θ(r)” time and “O(s)” amount of memory [17].

F. Antimirov’s Method

The corresponding algorithm converts a regular
expression “t” into a nondeterministic finite automata (NFA)
[18]. It uses the most “|t|+1” status while doing this operation.
The details of this algorithm are explained in detail in the
following.

In the given regular expression “t” according to the
alphabet “A”, let the automata be “M” and also, let the state
sets be “M = PD(t)”. The initial state is “μ0 = t”, the coupling
function is “τ(p,x) = ðx(p)” – p є PD(t), x є A – and the end
state sets are “F = {p є PD(t) | o(p) = λ}”. Accordingly, the
“M” automata is be able to recognize the “L(t)” regular
language. To put this construction structure into practice, the
functions “PD(t)” and “τ” have to be calculated, and the
following operations have to be repeated sequentially [18].

<PD0, Δ0, τ0>:= < Ø, {t}, Ø >

PDi+1 := PDi U Δi

Δi+1 := p є Δi U {q | <x, q> є if (p) Λ q –є PDi+1}

τi+1 := τi U { <p, x, q> | p є Δi Λ <x, q> є if(p)}

The working time of this algorithm is between “O(n)” and
“O(n2)” (n is the length of the given regular expressions.).

IV. APPLICATION – NFA CONVERSION TOOL

A tool based on Thompson Algorithm [19-22] has been
designed and developed in order to convert regular
expressions to nondeterministic finite automata (NFA). This
is a new and original application for modelling NFA
according to given characters and expressions. NFA
conversion tool works and performs based on the following
directions.

With the arrival of the data, the NFA function starts to
work. Each character in the regular expression is detected.
These characters may be either a term or an action. Terms can
be letters or numbers. Operations are union, concatenation and
star operators. The union operation is given as the character
“|”, the concatenation operation is demonstared as the
character “.” and the star operation is also expressed with the
character “*”. When these characters are specified, it is
understood that the terms will enter an operation. Also, the
parentheses “(“, “)” help determine the priority of the
operations. According to the rules of these operations, it is
determined that the terms, that are letters or numbers, go from
which state to which state. When the NFA function completes
running (finishes), all the states in the nondeterministic finite
automata (NFA), and their trajectories appear exactly right.
Thus, the necessary data for drawing the NFA are obtained.

Based on the application which have been designed and
developed for modelling NFA, several regular expressions
have been converted into nondeterministic finite automata in
the study for showing its efficiency and usability: in Figure 6,
the expression “a”, in Figure 7, the expression “abc”, in Figure
8, the expression “a*bc”, and in Figure 9, the expression
“(ab|bc)*” have separated, operated, transformed and drawn
in the following.

Journal of Emerging Computer Technologies
Batar and Birant

Volume:1, No:2, Year: 2021, Pages: 38-43, December 2021, Journal of Emerging Computer Technologies

42

Fig. 6. NFA for the expression “a” in the developed tool in this study.

Fig. 7. NFA for the expression “abc” in the developed tool in this study.

Fig. 8. NFA for the expression “a*bc” in the developed tool in this study.

Fig. 9. NFA for the expression “(ab|bc)*” in the developed tool in this

study.

V. CONCLUSION

Regular expressions are a representation in automata that
make up regular languages. With the contribution of this
notation, a given sample character string model can be tested;
a text can be replaced with another; a smaller character string
belonging to that string can be extracted from or added into a
character string depending on the pattern match; word, text or
symbol analysis can be performed. Also, regular expressions

can be used effectively in search engines, natural language
processing, parallel programming and neural networks. That
means, regular expressions have an important role in
computation area. With the help of this study, a tool has been
designed and developed for that regular expressions are
converted into nondeterministic finite automata (NFA). So,
this tool may provide to understand more clearly and to benefit
more effectively regular expressions for anyone who is
interested in computing theory. In addition, this conversion
application may be used in the studies and the researches
about regular expressions. Thus, the tool, which have been
designed and developed in this study, will have had a positive
effect on both academic literature and computational industry.

ACKNOWLEDGMENT

Upon request, the executable file of the developed
conversion tool and its source code within the scope of the
study can be shared with the researchers who are interested in.
Also, ethics committee approval form and document is not
required for this study, and the authors declare that there is no
conflict of interest.

REFERENCES

[1] Horswill, I. (2008). What is computation? Obtained from
https://users.cs.northwestern.edu/~ian/What%20is%20computation.pd
f (Last access on 19th August 2021)

[2] Harvey, B. (1997). Computer science logo style (1st ed.). USA: The
MIT Press.

[3] Dlugosch, P., Brown, D., Glendending, P., Leventhal, M., & Noyes,
H. (2014). An efficient and scalable semiconductor architecture for
parallel automata processing. IEEE Transactions on Parallel and
Distributed Systems, 25(12), 3088-3098.

[4] Lucas, S. M., & Reynolds, T. J. (2005). Learning deterministic finite
automata with a smart state labeling evolutionary algorithm. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 27(7),
1063-1074.

[5] Holzer, M., & König, B. (2004). On deterministic finite automata and
syntactic monoid size. Theoretical Computer Science, 327(3), 319-347.

[6] Yang, L. Karim, R., Ganapathy, V., & Smith, R. (2011). Fast, memory-
efficient regular expression matching with NFA-OBDDs. Computer
Networks, 55(15), 3376-3393.

[7] Pao, D, Lam, N., & Cheung, R. A memory-based NFA regular
expression match engine for signature-based intrusion detection.
Computer Communications, 36(10-11), 1255-1267.

[8] Hopcroft E., Motwani, R., & Ullman, D. (2007). Introduction to
automata theory, languages, and computation (3rd ed.). Britain:
Pearson.

[9] Konstantinidis, S. (2007). Computing the edit distance of a regular
language. Information and Computation, 205(9), 1307-1316.

[10] Owens, S., Reppy, J., & Turon, A. (2009). Regular-expression
derivatives re-examined. Journal of Functional Programming, 19(2),
173-190.

[11] Lee, T. (2009). Hardware architecture for high-performance regular
expression matching. IEEE Transactions on Computers, 58(7), 984-
993.

[12] Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P., & Turner, J. (2006).
Algorithms to accelerate multiple regular expressions matching for
deep packet inspection. Proceedings of the 2006 conference on
Applications, technologies, architectures, and protocols for computer
communications, 339-350.

[13] McNaughton, R., & Yamada, H. (1960). Regular expressions and state
graphs for automata. IRE Transactions on Electronic Computers, 9(1),
39-47.

[14] Kurai, R., Yasuda, N., Arimura, H., Nagayama, S., & Minato, S.
(2014). Fast regular expression matching based on dual Glushkov
NFA. Proceedings of PSC 2014, 3-16.

[15] Thompson, K. (1968). Programming techniques: Regular expression
search algorithm. Communications of the ACM, 11(6), 419-422.

Journal of Emerging Computer Technologies
Batar and Birant

Volume:1, No:2, Year:2021, Pages:38-43, December 2021, Journal of Emerging Computer Technologies

43

[16] Berry, G., & Sethi, R. (1986). From regular expressions to
deterministic automata. Theoretical Computer Science, 48(1), 117-
126.

[17] Chang, C. (1992). From regular expressions to DFA’s using
compressed NFA’s. PhD Thesis, New York University, New York.

[18] Antimirov, V. (1996). Partial derivatives of regular expressions and
finite automaton constructions. Theoretical Computer Science, 155(2),
291-319.

[19] Brzozowski, J. A. (1964). Derivatives of regular expressions. J. ACM
11(4), 481-494.

[20] Kleene, S. C. (1956). Representation of events in nerve nets and finite
automata. In Automata Studies, Ann. Math. Stud. No. 34. Princeton U.
Press, Princeton, N. J., 3-41.

[21] IBM Corp. IBM 7094 principles of operation. File No. 7094-01, Form
A22-6703-1.

[22] Kuno, S., & Oettinger, A. G. (1962). Multiple-path syntactic analyzer.
Proc. IFIP Congress, Munich.

