
Journal of Emerging Computer Technologies
Research Article

Received: 2021-12-03 | Reviewing: 2021-12-03 & 2021-12-28| Accepted: 2021-12-28 | Online: 2021-12-28 | Issue Date: 2021-12-31

Cite (APA): Cakirgoz, O., Sevinc, S. (2021). A Dynamic Method and Program for Multiple Password Generation and Management. Journal of Emerging
Computer Technologies, 1(2), 61-67.

Volume:1, No:2, Year: 2021, Pages:61-67, December 2021, Journal of Emerging Computer Technologies
61

A Dynamic Method and Program for Multiple

Password Generation and Management
Onur Çakırgöz

Department of Computer Engineering

Bartın University, Bartın, Turkey
onurcakirgoz@bartin.edu.tr

0000-0002-9347-1105

Süleyman Sevinç

Labenko Bilişim A.Ş.

İzmir, Turkey
suleysevinc@gmail.com

0000-0001-9052-5836

Abstract— Authentication is a process that should be

fulfilled by users to gain access to websites/services. Today, the

most common method used for authentication is still text-based

passwords. However, several difficulties/problems are

encountered during the use of passwords for authentication.

One of them is that users must use a separate and strong

password for each different website. Unfortunately, rather than

using distinct passwords, users generally prefer to use the same

password or similar passwords for different services, which

inevitably leads to security vulnerabilities. Therefore, there is a

need for a method/program that will enable easy and secure

management of many strong passwords. In this study, a

dynamic method and program is proposed to solve this problem.

This method and program, inspired by the Chinese Remainders

Theorem (CRT), simplifies the generation and management of

multiple passwords. With this program, many individual

passwords can be generated from a single unique password.

Both the unique password and the individual passwords are not

stored anywhere. The only thing users need to remember is the

unique password, and in our method, long but easy-to-

remember unique passwords can be used safely. Although

inspired by the CRT, our method is not based on the CRT. CRT

is only used in the security analysis of our method.

Keywords— password, password management, password

generation, chinese remainder theorem, authentication

I. INTRODUCTION

Since text-based password is economical and relatively
easy to use, it is still the most widely used authentication
method for electronic services [1], [2]. Besides, the number of
websites that users visit to receive service, and in parallel, the
number of passwords that they need to use are increasing day
by day [1]. However, the password usage that increases in
daily life has some consequences. The more passwords users
have, the harder they are to remember. Also, since non-
random and weak passwords are known to be prone to
dictionary attacks, companies and institutions define
policies/constraints on the password’s strength [3]. The
definition of some constraints by service providers upon the
strength(predictability) of passwords, significantly increases
the mental burden of the users [4]. From this point of view,
many studies were conducted investigating password
habits/behaviors of users [1], [2], [5], [6], [7], [8]. These
studies showed that a significant portion of users, even some
experts, use very similar passwords for different services, or
even the same password. On the other hand, the password
setting patterns of the users are also very similar. For example,
most of the users use capital letters at the beginning of
passwords, and numbers and punctuation at the end of
passwords. Thus, particular service provider’s security
policies that are applied to the user passwords encounter the
threat of losing the effects. In the worst-case, when a user uses
same password for n different services, a malicious

server/person can impersonate him/her and have illegal access
to these n services.

Among the approaches that facilitate the use/management
of passwords, password managers and password generators
are the two prominent approaches. Password managers are
applications that store user passwords in a place (locally or in
a remote location) and retrieve passwords when requested.
Most web browsers we use today also have this feature.
Password generators, on the other hand, are applications that
generate strong (hard to remember and guess) and random
passwords and regenerate them when needed. The basic
approach used by the majority of password generators is as
follows: Generating new passwords by blending several
pieces of information with a mathematical method. From this
perspective, the two things that make the difference between
password generators are the mathematical method used and
the types of information blended. The password generator
called Site-Specific Passwords (SSP) [9] is probably one of the
oldest proposed solutions. The SSP creates a password by
combining a user master password and an easy-to-memorize
name that the user specifies for the website. The main problem
with this approach is that as the number of websites increases,
the user is likely to forget the names he/she set (especially for
rarely used websites). The password generator named
Password Multiplier [10] creates a password by combining
the user master password, the website name, and the username
for the website. PasswordSitter [11] generates a password as
a function of the following components: user master
password, user ID, website/service name, and some
configurable parameters. The Passpet [12] application
generates a password as a function of the user's master
password and the name-icon pair selected by the user for the
website. ObPwd [13] generates a password using two
mandatory components (user master password and a website-
specific object selected by the user) and one optional
component (URL). PALPAS [14], unlike previous solutions,
uses server-provided password policy data to generate
passwords that meet the website's requirements. Password
policy data is a small file created with a simple XML-based
language. The other two components that PALPAS uses to
generate the password are a stored master password and a
client-side secret that is synchronized across all user devices.
On the other hand, AutoPass [15] is a solution similar to
PALPAS in terms of architecture and method. AutoPass fixed
some of the shortcomings/problems of the previously
proposed password generators. The Autopass client, which is
an add-on to the web browser, communicates with the
Autopass server. In case of Autopass server crash, the user
cannot access (generate) passwords. Abderrahim Abdellaoui
et al. proposed a scheme that performs authentication in a
cloud environment [16]. The proposed scheme is based on a
password generator that uses/blends methods such as multi-

Journal of Emerging Computer Technologies
Cakirgoz and Sevinc

Volume:1, No:2, Year: 2021, Pages:61-67, December 2021, Journal of Emerging Computer Technologies
62

factor authentication, one-time password, and SHA1. Finally,
drPass [17] is a protocol that helps users create and maintain
different passwords for each web site. For drPass to be used,
websites must accept this protocol and change their
architecture accordingly.

There are also password generators developed as add-ons
to various web browsers or as mobile applications. For
example, RndPhrase (https://rndphrase.appspot.com) is a
Firefox extension and similarly generates passwords as a
function of some information. PwdHash port
(https://addons.opera.com/en-gb/extensions/details/pwdhash-
port) is an Opera extension and based on the PwdHash [18]
password generator. On the other hand, Password generator
(https://goo.gl/SNVtJY) is an Android application and
generates passwords using configurable information.

Password managers are applications that help users to
store and manage multiple passwords. Password manager
programs are based on the basic principle of storing all user
passwords (in encrypted form) in one place (usually locally).
The user can access all the passwords stored locally with a
unique password called the master key, which the user must
know by heart. Among the current password management
programs, LastPass (https://www.lastpass.com), KeePass
(https://keepass.info), Dashlane (https://www.dashlane.com)
and 1Password (https://1password.com) stand out. When
these four password manager programs are examined, it is
seen that they all have the ability to automatically generate
strong passwords depending on the user's request. From this
point of view, these password managers also have a password
generator feature. In addition, these four programs encrypt the
database holding individual passwords with the AES-256
encryption algorithm. Most current online password managers
learn or store account passwords and/or master passwords. In
a recent study, this security vulnerability was addressed and
HIPPO [19], a cloud-based password manager protocol that
does not learn or store master passwords and account
passwords, was proposed for the design of online password
managers.

Single sign-on (SSO) protocols offer the opportunity to
automatically share identity/authentication data between
different sites [20], [21]. In this approach, a user authenticates
only once and thus gains access to different web sites without
having to re-authenticate. However, for this, SSO protocols
require involved parties to first establish a circle of trust.
Unfortunately, each service/site has different security
requirements/levels and it's impossible to create a single
unique federation where all parties trust each other [22].
Therefore, since there is no single unique SSO federation, the
SSO approach is not able to provide a definite solution to the
problem of managing the large number of passwords users
have [23].

CRT is an ancient theorem which is frequently used in
number theory, and it was originated by a Chinese
mathematician Sun Tzu. To date, CRT was used in many
scientific studies in both mathematics and computer science
fields for different purposes. One of the earliest and well-
known studies in computer science using the CRT is the (t,n)
threshold scheme [24] proposed by Asmuth & Bloom. In
2007, S. Iftene presented a multi-authority e-voting scheme
based on CRT [25]. J. C. Patra et al. proposed a novel CRT-
based technique for digital watermarking in 2010 [26]. One
year later, S. K. Kim et al. proposed new modular

exponentiation and CRT recombination algorithms secure
against all known power and fault attacks [27]. In 2014, K.
Kaya, and A. A. Selçuk proposed a new threshold scheme for
the Digital Signature Standard (DSS) using Asmuth–Bloom
secret sharing based on the CRT [28]. There are also many
recent studies in the literature that use the CRT for different
purposes such as secret sharing [29], image sharing [30], key
agreement [31], data encryption [32] and data compression
[33].

Due to security requirements, users must use a separate
and strong (cannot be guessed easily and hard to remember)
password for each different website. It is nearly impossible for
users to memorize/remember large numbers of strong
passwords. Therefore, there is a need for a method/program
that will enable easy and secure management of large numbers
of passwords. In this study, a dynamic method and program is
proposed for this need. The sections of the article are as
follows: In the second section, firstly, it is mentioned about
the passwords and the conversion of passwords into a numeric
value with polynomial representation, then, the CRT is
introduced, its formulas are given, and finally, the method and
program we developed for the generation and management of
multiple passwords are explained. In the third chapter, sample
individual passwords produced by our program are shown,
and the properties and security of our method is discussed.
Final remarks are given in the last section.

II. CHINESE REMAINDER THEOREM

CRT is about finding a solution to the system of
simultaneous congruences. Suppose that X, a and p are
positive integers. Then, (1) defines a congruence.

 𝑋 ≡ 𝑎(𝑚𝑜𝑑 𝑝)

A system of simultaneous congruences is defined in (2).
Here p1,p2,...,pn should be pairwise coprimes. Namely,
greatest common divisor; gcd(pi, pj) should be 1 for all 1≤ i,j
≤ n and i≠j. Then, this system of simultaneous congruences
has a unique solution X (mod r).

 𝑋 ≡ 𝑎𝑖 (𝑚𝑜𝑑 𝑝𝑖) (𝑖 = 1,2, ⋯ , 𝑛)

Given,

 𝑟 = ∏ 𝑝𝑖
𝑛
𝑖=1

Let,

 𝑀𝑖 = ∏ 𝑝𝑗 (𝑖 = 1,2, ⋯ , 𝑛)𝑛
𝑗=1,𝑗≠𝑖

Then, unique solution X is computed as in (5):

 𝑋 = (∑ 𝑎𝑖𝑀𝑖(𝑀𝑖
−1𝑚𝑜𝑑 𝑝𝑖)) (𝑚𝑜𝑑 𝑟)𝑛

𝑖=1

III. THE DYNAMIC METHOD AND PROGRAM FOR MULTIPLE

PASSWORD GENERATION AND MANAGEMENT

For the generation and management of multiple
passwords, firstly, a method called the backward direction
method was developed. In fact, the backward direction
method is exactly based on the CRT. Unfortunately, as a result
of the evaluations, it was seen that the method contains some

Journal of Emerging Computer Technologies
Cakirgoz and Sevinc

Volume:1, No:2, Year: 2021, Pages:61-67, December 2021, Journal of Emerging Computer Technologies
63

problems, and it is not possible to use it. Then, a different
method, called forward direction method, was developed. The
forward direction method is not based on the CRT. The CRT
was only evaluated in the security analysis of this method.
Both methods were described in detail below.

A. Backward Direction Method

Based on CRT, we might think (a1, a2, ..., an) in (2) as n
individual passwords (we already have or to be generated). In
response to these, prime numbers (p1, p2, ..., pn) that are greater
than these numbers can be generated randomly and can be
used to acquire individual passwords. The solution of this
system of simultaneous congruences would give us the X,
namely, the unique password.

Extracting individual passwords from X is
straightforward. In this case, k’th individual password can be
computed as X ≡ ak (mod pk).

Then, what we need to obtain individual passwords are the
value of X and the corresponding prime numbers. When X and
the respective prime number are put together, the desired
individual password can be easily acquired. But, having them
individually is not sufficient to obtain the password. In the
light of this information, we can define the required steps for
backward direction method:

1) Convert each of the n passwords to integer by using

Horner method.

2) For each password, generate a prime number that is

greater than password and distinct from each other.

3) Compute the unique password X from the equation

system.
4) Store prime numbers in a file. Also, remove n

passwords.

The “Backward_Direction_Method()” algorithm
generates unique password X and prime numbers in
accordance with the backward direction method:

Backward_Direction_Method(string[] passwords)
01 n = passwords.Length
02 Let Num_psw[0..(n+1)] be a new Biginteger array
03 for i = 0 to n-1
04 Num_psw[i] =
Convert_String_to_Integer(passwords[i])
05 for j = n to (n+1)
06 number = Randomly generate a Biginteger value
07 Num_psw[j] = number
08 Let primes[0..(n+1)], Mi_values[0..(n+1)] and
I_o_Mi[0..(n+1)] be new Biginteger arrays
09 primes = Find_primes_for_passwords(Num_psw, n+2)
10 Mi_values = Find_Mi_Values(primes)
11 M_value = Find_M_Value(primes)
12 I_o_Mi = Return_inverse_of_Mi(Mi_values, primes)
13 X_value = Compute_X(Num_psw, Mi_values, I_o_Mi,
primes, M_value)
14 X = Convert_Integer_to_String(X_value)
15 Print X to the screen, store first n primes in a file

In order to increase the security of the backward direction
method, two extra pairs of passwords and prime numbers are
created in the algorithm, and these are included in the solution
set. However, extra generated passwords and prime numbers
are discarded and are not shown to the user. The reason for
generating two extra password-prime number pairs is to
prevent a malicious person from finding the unique password

by obtaining some or all of the password-prime number pairs
of the user.

The details and working logic of the algorithm are as
follows: The "passwords" parameter is a string array, and it
holds individual passwords. In line 1, the number of individual
passwords is assigned to the “n” variable. The “Num_psw”
array is defined in Line 2, and this is used to hold numerical
equivalents of individual passwords. There is a for loop in
Lines 3 and 4, and the numerical equivalents of all individual
passwords are assigned to the first n elements of the
“Num_psw” array. Similary, there is a for loop between Lines
5 and 7, and randomly generated two biginteger values are
assigned to the last 2 elements of the “Num_psw” array. In
line 8, “primes”, “Mi_values” and “I_o_Mi” arrays are
defined, and they hold prime numbers, Mi values in (4), and
inverse of Mi values (Mi

-1) in (5), respectively. In line 9, prime
numbers are generated randomly by the
“Find_primes_for_passwords()” method and they are
assigned to the "primes" array. In line 10, Mi values are
calculated by the “Find_Mi_Values()” method, which
corresponds to (4), and then, they are assigned to “Mi_values”
array. In line 11, M value (r in (3)) is calculated by the
“Find_M_Value()” method, which corresponds to (3), and
then, it is assigned to “M_value” variable. In line 12, inverses
of Mi values (Mi

-1) calculated by the
“Return_inverse_of_Mi()” method are assigned to “I_o_Mi”
array. In line 13, the integer equivalent of the master password
is calculated by the “Compute_X()” method, which
corresponds to (5), and then, it is assigned to “X_value”
variable. In line 14, the unique (master) password is obtained
by converting the integer stored in “X_value” variable to
string. Finally, in line 15, the master password is shown on the
screen and the first n primes are stored in a file.

The password generation page in backward direction
method is shown in Fig. 1. The user can easily generate the
master (unique) password by entering individual passwords
via the form in Fig. 1.

Fig. 1. Password generation page in backward direction method

On the form, user first specifies the number of servers.
After that, equal number of textboxes for the names of the
servers and for the passwords become visible on the page.
Then, user fills the textboxes. Finally, when user clicks on the
Generate button, program runs pre-defined methods, writes
the names of the server to a text file and prints out unique
password, numerical equivalent of unique password, and
prime numbers. Furthermore, numeric values of individual
passwords, Mi values, inverse of Mi values and M value are
printed out. As seen in the figure, the generated unique
password X is not a memorable password.

Journal of Emerging Computer Technologies
Cakirgoz and Sevinc

Volume:1, No:2, Year: 2021, Pages:61-67, December 2021, Journal of Emerging Computer Technologies
64

As mentioned previously, users define either similar
passwords or same password for different service providers.
Obviously, this is a significant security problem. Since
individual passwords in backward direction method are
defined by the users in advance, the backward direction
method does not yield a solution to this security problem.
Furthermore, backward direction method has three important
drawbacks:

1) The generated X is a very big integer, and the string

equivalent of X is not a memorable password. In addition,

there are some white-space or control characters in the unique

password produced. (As is known, the first 32 characters in

ASCII table are not printable - they are control characters.)

2) New passwords cannot be added to the solution system

later. Because, when a new individual password and the

corresponding prime number are included in the solution

system, the unique password changes automatically.
3) As the number of individual password-prime pairs in

the equation system increases, the length of the unique
password automatically increases.

Due to these three important problems, the backward
direction method cannot be used by users in practice. In order
to overcome the second problem of the backward direction
method (not being able to add new individual passwords to
existing individual passwords later), a random prime number
(pi) can be generated first, and then a new individual password
can be obtained with X % pi operation. (This solution
approach, with some differences, already corresponds to the
basic logic of the forward direction method, which will be
explained in the next section.)

B. Forward Direction Method

Instead of starting from the individual passwords, users
can first determine the unique password X, which is
sufficiently complex but memorable. Secondly, sufficiently
large n numbers (divisors) are generated randomly. Here, n
numbers should not be pairwise coprime for security reasons.
Then, individual passwords can be obtained via the equation
(X mod pk) (for the k’th service). Accordingly, the steps of the
forward direction method can be defined as following:

1) Determine a strong unique password X.

2) Convert X into its numerical equivalent with Horner

method.

3) Generate n random and distinct integers (divisors)

which are not pairwise coprimes.

4) Perform (X mod pi) for p1, p2, ..., pn. (Here, pi

representation is used for divisors, as well)

5) Convert the results after modulo operation to their

string equivalents. Use the results after conversion as

individual passwords, but don’t store them somewhere.
6) Store n divisors in a file.

The “Forward_Direction_Method()” algorithm generates
individual passwords and divisors in accordance with the
forward direction method. The details and working logic of
the algorithm are as follows: The "password" parameter is the
unique password. On the other hand, the "number" parameter
shows the number of individual passwords (and naturally, the
number of divisors) to be generated. In line 1, the integer
equivalent of the unique password is calculated, and this value
is assigned to the variable “Xvalue”. The "divisors" and

"passwords" arrays are defined in line 2, and these arrays hold
the divisors and individual passwords that will be presented to
the user, respectively. There is a while loop between lines 4
and 11, and the two variables (“flag” and “index”) defined in
line 3 are used appropriately in this loop. In line 5, a divisor is
generated randomly by the "Find_divisor_number()" method
and this divisor is assigned to the "newdivisor" variable.
(“newdivisor” is of type Biginteger.). In line 6, the individual
password is obtained by converting the result of the operation
(the numeric equivalent of the unique password % the divisor
produced) to string, and the individual password is assigned to
the variable “psw”. In the if statement on the 7th line, it is
checked whether the individual password meets the criteria/
restrictions (e.g., minimum-maximum or fixed length, the
variety of symbols the password is required to contain, etc.)
and whether the currently generated divisor is different from
the previously generated ones. Here, since different
constraints can be defined for each individual password, the
“Control_password()” algorithm checks the individual
password with password-specific constraints. Also,
“Control_divisor()” algorithm in line 7 checks whether the
currently generated divisor and the previously generated ones
are pairwise coprimes. If the individual password and the
divisor meet the criteria, they are recorded in the respective
arrays. If the specified number of individual passwords are
generated, the loop is terminated (Lines 11-12). Finally, in line
13, all divisors are stored in a file.

Forward_Direction_Method(string password , int number)
01 Xvalue = Convert_String_to_Integer(password)
02 Let divisors[0..number-1] be a new Biginteger array and
passwords[0..number-1] be a new string array
03 flag = true, index = 0
04 while(flag)
05 newdivisor = Find_divisor_number()
06 psw = Convert_Integer_to_String(Xvalue %
newdivisor)
07 if (Control_password(psw) &&
Control_divisor(divisors, newdivisor))
08 divisors[index] = newdivisor
09 passwords[index] = psw
10 index = index + 1
11 if (index = = number)
12 flag = false
13 Store divisors in a file

The password generation page in forward direction
method is shown in Fig. 2. The user can easily generate
individual passwords by entering the unique password via the
form in Fig. 2. The details are as follows: If the user clicks on
the Calculate button after entering the unique password and
the number of passwords to be generated, the program asks for
the properties (restrictions) of each individual password. After
this stage, the program executes predefined methods and
shows the generated passwords and divisors on the screen. As
a general constraint, the generated individual passwords
consist of only keyboard characters. This is provided via a
simple function (“Control_password()”) which checks the
generated passwords. If the numerical equivalents of the
characters constituting a password is between [33..125] in the
ASCII table, this string is accepted as a password.

The divisors required to obtain individual passwords are
stored in a simple text file together with the server names. An
example text file generated by the program and that holds
divisors is seen in Fig. 3. In this way, all individual passwords

Journal of Emerging Computer Technologies
Cakirgoz and Sevinc

Volume:1, No:2, Year: 2021, Pages:61-67, December 2021, Journal of Emerging Computer Technologies
65

can be obtained easily by entering the unique password to the
program. At this point, the operations of the program are quite
simple: reading the file that holds the divisors and performing
the modulo operations.

Fig. 2. Password generation page in forward direction method

Fig. 3. The text file generated by the program and that holds divisors

IV. RESULTS AND DISCUSSION

The number of all possible passwords that can be
generated in the forward direction method and the properties
of the passwords depend on many parameters. These
parameters can be listed as follows:

 Size of symbol space

 Unique password defined by the user

 Minimum character length constraint defined on the
unique password

 Divisors randomly generated by the program

 Minimum value constraint defined on divisors

 Various constraints on the individual passwords to be
generated (minimum character length, the variety of
symbols the password is required to contain)

On the other hand, in order to provide the minimum
character length constraint defined on individual passwords,
randomly generated divisors must also be larger than the
numerical equivalents of individual passwords. The parameter
values determined in the developed application and the
constraints defined for passwords are given in Table-1. Based
on these parameter values and defined constraints, nearly 9313
different individual passwords which consist of 13 characters
can be generated. The relevant constraints given in Table-1
were applied to all individual passwords to be generated. That
is, the same constraints were defined for all individual
passwords. In accordance with the parameter values and

constraints specified in Table-1, sample individual passwords,
divisor numbers and numerical equivalents of passwords
produced by the application are given in Table-2. In Table-2,
the divisor numbers used to generate individual passwords
range from 28 to 30 digits. Similarly, the numerical
equivalents of individual passwords range from 27 to 30
digits. On the other hand, in this example, “this book is the
best i have ever had” is chosen as the master password. This
is a very easy phrase to memorize and remember.

TABLE I. PARAMETER VALUES IN THE APPLICATION AND

CONSTRAINTS DEFINED FOR PASSWORDS

Parameter/Constraint Value

The Length of Symbol Space(s) 93 (keyboard characters whose
decimal values are between 33 and
125 in the ASCII table)

The minimum Length of Unique
Password

30

The minimum Length of
Individual Passwords

13

Other Constraints Defined for
Individual Passwords

Must contain at least one uppercase
letter, at least one lowercase letter, at
least one number, and at least one
punctuation mark.

TABLE II. SAMPLE INDIVIDUAL PASSWORDS GENERATED IN THE

FORWARD DIRECTION METHOD AND OTHER ASSOCIATED DATA

Property Value

Unique
Password

this book is the best i have ever had

Numeric
Equivalent
of Unique
Password

63748719948440530695213837020182020578953940932
9676264982991460490985659692190 (78 digits)

Number of
Individual
Passwords
Generated

6

The
Generated
Individual
Password
and
Divisor
Pairs

Password1: {C<V{#CwvvUj%5
Numeric_value_of_Password1:
276201135629902806667468828515 (30 digits)
Divisor1: 610856374281445570668243697275 (30 digits)

Password2: 8e-@=:`KLyX#b
Numeric_value_of_Password2:
999950350888928822060524610 (27 digits)
Divisor2: 2309675321245365478764190340 (28 digits)

Password3: "&=|M1c\pQOE/4
Numeric_value_of_Password3:
76697494620780536421904775292 (29 digits)
Divisor3: 596724521821025330551145693283 (30 digits)

Password4: X1wu$a\dlA0,ab
Numeric_value_of_Password4:
197636672696185503159209650158 (30 digits)
Divisor4: 835582329520223192761822244848 (30 digits)

Password5: 9,k8si,=B)b)/
Numeric_value_of_Password5:
1009721696862893015829571002 (28 digits)
Divisor5: 11437179011511338675665809978 (29 digits)

Password6: oL-hf|5v^rznOP
Numeric_value_of_Password6:
249526971213973380176697533304 (30 digits)
Divisor6: 311426100131301312047243915511 (30 digits)

Journal of Emerging Computer Technologies
Cakirgoz and Sevinc

Volume:1, No:2, Year: 2021, Pages:61-67, December 2021, Journal of Emerging Computer Technologies
66

The CRT corresponds to the backward direction method,
but the forward direction method is a different approach from
the CRT. Our multiple password generation and management
program is based on the forward direction method. One of the
strong features of the method and the program is that both the
unique password and individual passwords are not stored
anywhere. Only the divisors needed to obtain individual
passwords are kept in a file. The divisors do not mean
anything on their own. Moreover, in the forward direction
method, even the divisor-individual password pairs are not
sufficient to find the unique password. Because, as the CRT
states, all pi’s in (1) should be pairwise coprimes. However, in
the forward direction method, the divisors are generated in
such a way that they are not pairwise coprimes. Therefore,
even though we have all the divisor-individual password pairs,
it is not possible to find the unique password using the CRT.

As shown in Table-2, there is a huge difference (in terms
of numerical size) between the numerical equivalent of the
unique password and the divisors. In this example, the
numerical equivalent of the unique password is 78 digits,
whereas the largest divisor is 30 digits. Another meaning of
this is that the quotient values are much larger than the divisor
numbers during modulo operations. With a simple
mathematical calculation, it can be found that the quotient
values correspond to a number of at least 48 digits. On the
other hand, today, an ordinary personal computer at 3 GHz
can perform approximately 2.7x1014 transactions (for a single
core of the processor) in 1 day. Even if the individual
password and divisor pair are known, the time required to find
the unique password using a brute force approach is nearly
1034 days.

V. CONCLUSION

In general, the number of websites where users register to
get services is quite high, and this number is increasing day by
day. Naturally, for security reasons, users must define and
maintain strong and distinct passwords for these different
websites. On the other hand, memorizing and bearing many
strong passwords in mind is a difficult task. From this point of
view, in this study, a dynamic method and program is
proposed for the generation and management of many distinct
and strong passwords. The proposed method is mainly based
on modulo operation. In this method, the user first defines an
easy-to-remember and relatively long unique (master)
password. Then, the user can easily generate individual
passwords by entering the program the unique password and
the number of individual passwords he/she wants to generate.
One of the most important features of our method is that the
generated individual passwords are not stored anywhere. Only
the divisors used to obtain individual passwords are stored in
a simple text file. On the other hand, the characteristics of the
generated individual passwords depend on many parameters.
Individual passwords with desired properties can be generated
by defining different constraints.

Since the equation system created by our method is similar
to the CRT, the CRT was evaluated in the security analysis
part of the method. Our approach does not introduce new risks
for authentication. Without any loss of security, this approach
has the potential to increase the usability of password-based
authentication, and individual passwords created would not be
prone to dictionary attacks. As a result, our multiple password
generation and management program provides managing
many individual passwords through a master password and

makes password-based authentication more practical and
easier to manage for users.

REFERENCES

[1] W. A. S. A. Alothman, “Evaluating Passwords User Behavior and the
Psychology of Password Management”, International Journal of
Engineering and Computer Science, 8(04), 24586–24602, 2019.

[2] E. Stobert, R. Biddle, “The password life cycle”, ACM Transactions on
Privacy and Security (TOPS), 21(3), 1-32, 2018.

[3] P. Arias-Cabarcos, et. al., “Comparing password management
software: toward usable and secure enterprise authentication”, IT
Professional, 18(5), 34-40, 2016.

[4] B. Brumen, “System-Assigned Passwords: The Disadvantages of the
Strict Password Management Policies”, Informatica, 31(3), 459-479,
2020.

[5] Y. Y. Choong, “A cognitive-behavioral framework of user password
management lifecycle”, In International Conference on Human
Aspects of Information Security, Privacy, and Trust, Springer, Cham,
127-137, June 2014.

[6] E. Stobert, R. Biddle, “Expert password management”, In International
Conference on Passwords, Springer, Cham, 3-20, December 2015.

[7] B. E. Ur, Supporting password-security decisions with data, PhD
Thesis, Carnegie Mellon University, 2016.

[8] C. Shen, et. al., “User practice in password security: An empirical study
of real-life passwords in the wild”, Computers & Security, 61, 130-141,
2016.

[9] A. H. Karp, Site-specific passwords, HP Laboratories, Palo Alto, Tech.
Rep., May 2003.

[10] J. A. Halderman, B. Waters, E. W. Felten, “A convenient method for
securely managing passwords”, In Proceedings of the 14th
international conference on World Wide Web, 471-479, May 2005.

[11] R. Wolf, M. Schneider, The passwordsitter, Fraunhofer Institute for
Secure Information Technology (SIT), Tech. Rep., May 2006.

[12] K. P. Yee, K. Sitaker, “Passpet: Convenient password management and
phishing protection”, In Proceedings of the second symposium on
Usable privacy and security, 32-43, July 2006.

[13] M. Mannan, P. C. van Oorschot, “Passwords for both mobile and
desktop computers: ObPwd for Firefox and Android”, USENIX ;login,
37(4), 28–37, 2012.

[14] M. Horsch, A. Hülsing, J. A. Buchmann, “PALPAS — passwordless
password synchronization”, In 2015 10th International Conference on
Availability, Reliability and Security, 30-39, August 2015.

[15] F. Al Maqbali, C. J. Mitchell, “AutoPass: An automatic password
generator”, In 2017 International Carnahan Conference on Security
Technology (ICCST), 1-6, IEEE, October 2017.

[16] A. Abdellaoui, Y. I. Khamlichi, H. Chaoui, “A novel strong password
generator for improving cloud authentication”, Procedia Computer
Science, 85, 293-300, 2016.

[17] S. Panda, S. Mondal, “drPass: A Dynamic and Reusable Password
Generator Protocol”, In International Conference on Information
Systems Security, 407-426, Springer, Cham, December 2018.

[18] B. Ross, et. al., “Stronger Password Authentication Using Browser
Extensions”, In USENIX Security Symposium, 17-32, August 2005.

[19] M. Shirvanian, et. al., “A hidden-password online password manager”,
In Proceedings of the 36th Annual ACM Symposium on Applied
Computing, 1683-1686, March 2021.

[20] P. Arias-Cabarcos et al., “Blended Identity: Pervasive IdM for
Continuous Authentication”, IEEE Security & Privacy, 13(3), 32–39,
2015.

[21] F. Alaca, P. C. V. Oorschot, “Comparative analysis and framework
evaluating web single sign-on systems”, ACM Computing Surveys
(CSUR), 53(5), 1-34, 2020.

[22] P. Arias-Cabarcos, et. al., “Comparing password management
software: toward usable and secure enterprise authentication”, IT
Professional, 18(5), 34-40, 2016.

[23] N. Katuk, et. al., “Can single sign-on improve password management?
A focus group study”, Pattern Analysis, Intelligent Security and the
Internet of Things, Advances in Intelligent Systems and Computing,
85-93, Springer, Cham, 2015.

[24] C. Asmuth, J. Bloom, “A modular approach to key safeguarding”,
IEEE transactions on information theory, 29(2), 208-210, 1983.

Journal of Emerging Computer Technologies
Cakirgoz and Sevinc

Volume:1, No:2, Year: 2021, Pages:61-67, December 2021, Journal of Emerging Computer Technologies
67

[25] S. Iftene, “General Secret Sharing Based on the Chinese Remainder
Theorem with Applications in E-Voting”, Electronic Notes in
Theoretical Computer Science (ENTCS), 186, 67–84, 2007.

[26] J. C. Patra, A. Karthik, C. Bornand, “A novel CRT-based watermarking
technique for authentication of multimedia contents”, Digital Signal
Processing, 20, 442-453, 2010.

[27] S. K. Kim, et. al., “An efficient CRT-RSA algorithm secure against
power and fault attacks”, The Journal of Systems and Software, 84(10),
1660-1669, 2011.

[28] K. Kaya, A. A. Selçuk, “Sharing DSS by the Chinese Remainder
Theorem”, Journal of Computational and Applied Mathematics, 259,
495-502, 2014.

[29] Y. H. Chou, G. J. Zeng, X. Y. Chen, S. Y. Kuo, “Multiparty weighted
threshold quantum secret sharing based on the Chinese remainder

theorem to share quantum information”, Scientific Reports, 11(1), 1-
10, 2021.

[30] K. Meng, F. Miao, Y. Xiong, C. C. Chang, “A reversible extended
secret image sharing scheme based on Chinese remainder theorem”,
Signal Processing: Image Communication, 95, 116221, 2021.

[31] Y. Jiang, Y. Shen, Q. Zhu, “A Lightweight Key Agreement Protocol
Based on Chinese Remainder Theorem and ECDH for Smart Homes”,
Sensors, 20(5), 1357, 2020.

[32] T. Duseja, M. Deshmukh, “Image compression and encryption using
chinese remainder theorem”, Multimedia Tools and Applications,
78(12), 16727-16753, 2019.

[33] R. Vidhya, M. Brindha, “Evaluation and performance analysis of
Chinese remainder theorem and its application to lossless image
compression”, Journal of Ambient Intelligence and Humanized
Computing, 1-16, 2021.

