
Journal of Emerging Computer Technologies
Research Article

Received: 2020-10-04 | Reviewing: 2020-10-28 & 2020-11-18| Accepted: 2020-12-02 | Online: 2020-12-10 | Issue Date: 2021-06-30

Cite (APA): Risteski, G., Chathurika, M., Ali, B., Hristov, A. (2021). Log Analysis with Hadoop MapReduce. Journal of Emerging Computer Technologies, 1(1), 1-5.

Volume:1, No:1, Year: 2021, Pages: 1-5, June 2021, Journal of Emerging Computer Technologies

1

Log Analysis with Hadoop MapReduce
Gligor Risteski

Faculty of Communication Network and

Security

University of Information Science and

Technology, Ohrid, Macedonia

gligorr@gmail.com

Mihiri Chathurika
Faculty of Communication Network and

Security

University of Information Science and

Technology, Ohrid, Macedonia

mihiritxla@gmail.com

Atanas Hristov

(Corresponding Author)
Faculty of Information and Communication

Sciences

University of Information Science and

Technology, Ohrid, Macedonia

atanas.hristov@uist.edu.mk,

ORCID: 0000-0003-2741-8370

Beyza Ali
Faculty of Communication Network and

Security

University of Information Science and

Technology, Ohrid, Macedonia

beyzaali34@gmail.com

Abstract— Pretty much every part of life now results in the

generation of data. Logs are documentation of events or records

of system activities and are created automatically through IT

systems. Log data analysis is a process of making sense of these

records. Log data often grows quickly and the conventional

database solutions run short for dealing with a large volume of

log files. Hadoop, having a wide area of applications for Big Data

analysis, provides a solution for this problem. In this study,

Hadoop was installed on two virtual machines. Log files

generated by a Python script were analyzed in order to evaluate

the system activities. The aim was to validate the importance of

Hadoop in meeting the challenge of dealing with Big Data. The

performed experiments show that analyzing logs with Hadoop

MapReduce makes the data processing and detection of

malfunctions and defects faster and simpler.

Keywords— Hadoop, MapReduce, Big Data, log analysis,

distributed file systems.

I. INTRODUCTION

The term “Big Data” is gaining more popularity every day.
The first thing we should know about it is that it does not have
a commonly held definition. Basically, as one can understand
from its name, Big Data means a big amount of data. Sethy,
R. [1] in his article defines "Big Data describes any massive
volume of structured, semi-structured and unstructured data
that are difficult to process using a traditional database
system."

 Researches show that data volumes are doubling every
year. Although there is not a specific reason behind this rapid
growth rate, the new data sources, contribute to that growth
highly. Smartphones, tablet computers, sensors, and all other
devices that can be connected to the internet generate a vast
amount of data. Enterprises improve their technological
infrastructures and adopt more powerful platforms, which
play an important role in the growth rate of the data that is
generated [2].

II. HADOOP

Hadoop is a collection of open-source utilities which
allows the use of network to deal with the problems which
include big amounts of data. Hadoop provides framework for
distributed storage and framework for processing big data
with MapReduce programing model. The core of Apache
Hadoop framework contains the following parts:

 Hadoop Common

 Hadoop Distributed File System (HDFS)

 Hadoop YARN

 Hadoop MapReduce

Hadoop common represent libraries and utilities which are
needed by other Hadoop parts in order to operate. Hadoop
distributed File System (HDSF) is a distributed file-system
that stores data on commodity hardware, allowing very high
bandwidth across the cluster. Hadoop YARN is a platform
responsible for managing computing resources in clusters and
uses them for scheduling users' applications. Lastly, Hadoop
MapReduce is a programing model for big data processing in
the cluster.

Java is a programming language that is mostly used for
writing MapReduce programs but Hadoop allows the use of
any programming language to write MapReduce programs.

To exploit the parallel processing that Hadoop gives, we
have to express our query as a MapReduce job. After some
local, little scope testing, we can have the option to run it on a
cluster of machines.

The Hadoop structure is demonstrated in Figure 1.

Fig 1. Hadoop Structure

A. Hadoop Distributed File System (HDFS)

Hadoop Distributed File system is one of the most reliable
storage systems designed to store a smaller number of large
files rather than a greater number of small files. Among many
of the features HDFS provides, the fault-tolerant storage layer
can be mentioned as one of the most important features.

Journal of Emerging Computer Technologies
Risteski et al.

Volume:1, No:1, Year: 2021, Pages: 1-5, June 2021, Journal of Emerging Computer Technologies

2

Replication of data in the Hadoop file system helps the user to
attain this feature. Even in situations where hardware failure
happens, the data reliability is still high [3].

Apache Yarn, introduced in Hadoop 2.x, is the resource
management layer of Hadoop, which is also used for job
scheduling and data operating system. It allows different data
processing engines to run and process data stored in HDFS.
Some of these processing engines are graph processing,
interactive processing, stream processing, and batch
processing. Data processing platform Yarn has the
functionality named MapReduce, which empowers Hadoop
by allowing processing numerous different frameworks on the
same hardware where Hadoop is deployed [4].

HDFS was developed using distributed file system design
and is designed using low-cost hardware. It is more fault-
tolerant than other distributed systems. HDFS is capable of
holding larger amounts of data providing easy access and
parallel processing. In HDFS files are stored across multiple
machines in order to prevent possible data losses in case of
system failure [3]. Features of HDFS are: distributed storage
and processing, command interface, checking the status of
clusters, streaming access to the file system, file permission,
and authentication.

 Distributed storage and processing

 Command interface to interact with HDFS

 Checking the status of cluster easily

 Streaming access to file system data

 File permissions and authentication

1) HDFS Architecture

HDFS follows the master-slave architecture. It has

elements such as namenode, datanode, and blocks, where the

built-in servers of the first two elements enable users to easily

check the status of the cluster. Similarly, they are commodity

hardware [point]. In Figure 2 the architecture of the Hadoop

file system is demonstrated.

Fig 2. Architecture of a Hadoop File System

 Namenode

 The namenode, containing GNU/Linux operating

system and the namenode software, can act as the master

server running on commodity hardware. Renaming and

opening/closing files/directories are executed in this element.

It also manages the file system and regulates clients’ access

to files.

 Datanode

Similar to namenode, the datanode too, contains the

GNU/Linux operating system and datanode software. For

every node in a cluster, there exists a datanode, which is able

to manage the data storage of the system. Depending on the

instructions of the namenode, datanode performs block

creation, block deletion, and block replication. It also

performs read/write operations on the file system when

requested by a client.

 Block

. Usually, the user data are stored in files such that a file

in a file system is divided into segments and then are stored

in individual data nodes. Those file segments are called

blocks. A block is the minimum amount of data that HDFS

can read/write. The block size can be increased if needed but

the normal size is 64MB.

B. Apache Hadoop Yarn

 To create a split between Resource Manager (RM) and

Application Master (AM), YARN separates the functions of

resource management and job scheduling into separate

daemons. An application can be an individual job or a DAG

of jobs.

 ResourceManager (RM)

Resource Manager (RM) together with the Node

Manager (NM) comprise the data-computation framework.

The RM adjudicates the resources in the system and NM is

responsible for containers and monitoring resource usage. In

other words, RM is the ultimate authority and NM is the

framework agent. RM has two main components known as

Scheduler and Application Manager.

 Scheduler

 Scheduler controls the allocation of resources to the

several running applications. It performs the scheduling

function depending on the resource requirements of

applications, but it does not take any responsibility for

performing monitoring, tracking the status of applications or

application or hardware failures.

 ApplicationsManager

 Applications Manager: responsible for restarting the AM

container in case of a failure. It also accepts job submissions.

 ApplicationMaster (AM)

 The AM is responsible for requesting resources from the

RM and then executing and monitoring the tasks. It works

together with NM when executing the tasks.

 The main idea behind using YARN on Hadoop is the

notion of resource reservation via the Reservation System.

The Reservation System tracks the resources, performs

admission control for reservations, and reserves resources to

ensure the execution of important jobs [4].

 YARN supports the notion of Federation via the YARN

Federation feature. The idea behind this is to scale Yarn up to

very large amounts of nodes by wiring YARN clusters and

sub-clusters. The Federation feature makes this transparent

wiring of clusters appear as a single big cluster [5].

III. THE ROLE OF MAPREDUCE IN HANDLING BIG DATA

Big Data means "big power" when handled efficiently. It
can give new aspects to the enterprises, like which strategy
will increase the profitability, which customers buy which
products, the current situation of the company versus the
situation of the competitors, and so on.

As the data comes from different sources and different
structures it is important to categorize it with respect to some
characteristics of the data. The most important and the most
known characteristics of Big Data are known as the "3Vs of

Journal of Emerging Computer Technologies
Risteski et al.

Volume:1, No:1, Year: 2021, Pages: 1-5, June 2021, Journal of Emerging Computer Technologies

3

Big Data" where the Vs stands for volume, variety, and
velocity. Volume refers to the amount of data, variety refers
to the type of data, i.e. text, image, video, etc. and velocity
refers to the speed at which the data comes from different
sources [6].

 Big Data comes with its own set of problems that need to
be resolved. Processing power, storage, data issues, and cost
are the most important problems. The old techniques for
working with or analyzing information are not enough to deal
with Big Data. Therefore, new technologies are needed and
this is where MapReduce comes into the picture [2].

A. MapReduce

MapReduce is a programming model that is used for
accessing and processing big data stored in HDFS. Programs
written in MapReduce are executed on a distributed system
where big data is split into smaller chunks of data and are
executed in parallel [7]. MapReduce has two functionalities,
Map () and Reduce (). This model has been used in Google's
search index, machine learning, and statistical analysis [8].
Implementation of MapReduce is highly scalable and easy to
use. The run-time system allows programmers with no prior
knowledge or experience with parallel processing to utilize the
resources of distributed systems easily, by handling details
like partitioning the inputs, scheduling the program's
execution, handling failures, and managing inter-machine
communication [7, 9].

 Although it is impossible to prevent failures, the objective
is to minimize the probability of failure to a level that will not
harm the overall process. Two methods that would help to
increase the "fault tolerance" in Big Data are the following [6]:

 First divide the whole computation into smaller tasks
and then assign each task to a different node.

 Assign a node to observe if the other nodes are
working properly. In case a node fails to complete its
task, the task is restarted. But this may cause a
complication in the process if some tasks are
recursive.

MapReduce is one of the core building blocks of
processing in the Hadoop framework. Hadoop uses the
MapReduce algorithm to run the applications in parallel. It
provides the necessary solution to keep the process going
since it can survive failures without losing data. In 2004
Google published about MapReduce technology [7].
MapReduce comprises of two distinct tasks: Map and Reduce.
Mapping is the first phase and Reducing happens after the
Mapping phase is completed. In Map phase data is processed
and key-value pairs are produced. This is known as the map
job. Then the produced key-value pairs are fed into the
Reducer. After collecting all the key-value pairs from all of
the map jobs the Reducer groups the pairs into a smaller set of
key-value pairs, producing the final output [7, 8].

Fig 3. How does MapReduce work?

B. Algorithm of MapReduce

MapReduce program has three stages of executing: map,
shuffle, and reduce.

 Map stage: at this stage, the map job processes the
input data which is in the form of a file or directory.
As an output of the map job several small chunks of
data are produced.

 Shuffle stage: at this stage, the output of the map

stage is accepted and the relevant records are

consolidated.

 Reduce stage: reduce stage acts together with the

shuffle stage. The reducer processes the data that

comes from the map stage and produces a new output

which is then stored in the Hadoop file system.
 During the process, a task from Map and Reduce phases
are sent to the appropriate servers in the cluster. All the data
passing details like issuing tasks, verifying task completion,
copying data between nodes, are managed by the MapReduce
framework. Because the computing is performed on nodes
using the data from local disks the network traffic is reduced
significantly. After the tasks are completed the results are sent
back to the Hadoop server [10].

C. MapReduce with Python

 ‘mrjob’ is a Python library for MapReduce for writing and
running Hadoop streaming jobs. It is created by Yelp. When a
MapReduce job is written using ‘mrjob’, it can be tested
locally and run on a Hadoop cluster or in the cloud. Using
‘mrjob’ for writing MapReduce applications has many
advantages. Some of them are:

 It is a dynamically developing framework.

 It has extensive documentation.

 Installing Hadoop is not enforced. Applications
written using ‘mrjob’ can be executed and tested
without installing Hadoop.

 It allows the MapReduce applications to be written
in a single class rather than writing separate
programs for Map and Reduce phases.

Although it provides a great solution, 'mrjob' has its
disadvantages. The most important disadvantage is that it does
not provide the level of access to Hadoop that other APIs
provide. This is because it is a simplified library [11].

IV. LOG ANALYZER WITH HADOOP

Log analysis is both art and science which aims to make
sense out of computer-generated records. These records are
called log or audit trail records. The process of creating these
records is known as data logging [12]. Some of the most
important reasons for performing log analysis are:

Understanding user behavior

 System troubleshooting

 Proper resource allocation

 Improved business operations

 Improved security

 Achieve compliance

Journal of Emerging Computer Technologies
Risteski et al.

Volume:1, No:1, Year: 2021, Pages: 1-5, June 2021, Journal of Emerging Computer Technologies

4

Data centers generate thousands of terabytes or petabytes
of log files every single day. It is very challenging to store and
analyze these data not only because of its large volume but
also because of the different structure of log files. Due to not
being able to deal with a large volume of log files efficiently,
conventional database solutions run short for the needs in log
analysis. As a result of the comparison of SQL DBMS and
Hadoop MapReduce in [13], Hadoop MapReduce
overperforms DBMS in the means of tuning up with the task
and loading data. As it can be seen from this result, with the
unprecedented increase in the data generated traditional
methods fall short with providing a solution for data analysis.
This is, exactly, the point where the new technologies stepped
in [8]. Hadoop MapReduce has a wide area of applications for
Big Data analysis [3],[9],[11]. The true power of Hadoop lies
in its ability to scale up to a great number of computers, where
each computer has several processor cores, by connecting
commodity computers to work in parallel. This plays an
important role in log analysis as it can benefit thousands of
nodes which will store multiple blocks of log files.

In this paper, we propose an idea on how Hadoop can be
used to analyze web server logs, in our case Nginx access log.
Web server access logs are generated by the web servers all
the time, recording all accesses on the hosted web pages. This
means that the access logs can be very big. The web access
log contains information about time, IP addresses, browser
type, etc. All of this information is important for the system
administrators as it provides information about system usage,
security, and system troubleshooting.

This idea is proposed for analyzing one kind of logs only,
but Hadoop can be used in every situation where big log files
are generated, such as system logs, logs from some business
application, etc.

The real-world usage (practical usage) of this system can
be implementing it as a base of a larger system used by many
users for log analyzing.

A. Environment Setup

We have installed Hadoop for demonstrating purpose on

two virtual machines hosted on Digitalocean. Each virtual

machine has 2 cores CPU and 8GB of RAM memory

(installing is explained in details in Installing Hadoop

section) with installed Ubuntu 16.04. Also, for testing

purpose we have installed Hadoop on one local virtual

machine with 1 core CPU and 7GB of RAM memory on

hosted hypervisor VMware Workstation Pro 15 using

Bitnami Hadoop Stack image. In this project the log

generated from Python Fake Logs script is used [14].

V. RESULTS

Our aim was to validate the role and importance of Hadoop
in meeting the challenge of dealing with Big Data, by an
analysis of log files in order to evaluate the system activities.
We benefitted from Hadoop's ability to scale up to as many
computers as needed. Firstly, log files are broken up into
blocks with MapReduce class created with mrjob python
library (dividing into blocks is explained in section 3.1).
Blocks are then distributed over the nodes in a Hadoop cluster.
With parallel computation, the job is divided into a number of
tasks, which in return improves the performance. In our log
analysis, we used Python's 'mrjob' library.

We use a dummy log file only for testing. Our log file is
the Nginx access log file. The log file contains information
about:

 visitor's IP address,

 date and time of the access,

 visited page,

 type of request,

 type of the user’s web browser,

 type of the user’s operating system.

In our case, two reports are extracted from the Nginx
access file as an example. These two reports are only an
example of what can be achieved. The following charts
demonstrate the results of our experiments. In Figure 4 the
number of visits is shown based on the hours the visitor visited
the websites. We can see that the number of visits is the
highest at 20:00 – 21:00. The number of visits is the lowest at
10:00 – 11:00.

Fig 4. Number of visits by hour

The second report analyzes which are the most visited
pages. It is possible to make many other reports depending on
the user's needs. For example, the most used browser, most
used operating system, detecting suspicious behavior, etc.

In Figure 5 the distribution of the visits is displayed with
regard to the most visited 10 sites.

Fig 5. Top 10 most visited sites

VI. DISCUSSION

Log data grows very quickly as they are generated at a
record rate. Processing power, storage, and cost are some of
the biggest challenges that come with this Big Data. Using
conventional methods to deal with such data is too costly in
terms of both time and money. Hadoop provides frameworks

Journal of Emerging Computer Technologies
Risteski et al.

Volume:1, No:1, Year: 2021, Pages: 1-5, June 2021, Journal of Emerging Computer Technologies

5

for distributed storage and processing for Big Data, which
makes it possible to use a network for processing and
analyzing big amounts of data. In this way, companies save
time and money when trying to diagnose problems, solve
issues, or obtain the knowledge they wouldn't be able to obtain
otherwise. The ability to store as well as distribute large
datasets across numerous servers in a cost-effective way
makes Hadoop very advantageous with regard to the
traditional relational database management systems.
Moreover, Hadoop MapReduce processes terabytes of data in
minutes and by executing tasks in parallel shortens the
processing of data by a considerable amount.

VII. CONCLUSION

Log analysis is important for businesses and system

administrators in many aspects, as they give information

about malfunctions, defects, security-related issues, and so

on. On the other hand, being generated constantly provides a

good example of Big Data, therefore a good example of our

experiments. Our analysis shows that analyzing logs with

Hadoop MapReduce makes the detection of malfunctions,

defects, and so on faster and simpler. The results also show

that there is not a big difference if we run the code in a real

cluster or in the test environment.

REFERENCES

[1] Sethy, R. et al. Big Data Analysis using Hadoop: A Survey.
International Journal of Advanced Research in Computer Science and
Software Engineering 5(7), 2015, pp. 1153-1157.

[2] Schneider, R.D. Hadoop For Dummies, Special Edition. John Wiley &
Sons Canada, Ltd. 2012.

[3] Borthakur, D. HDFS architecture. Document on Hadoop Wiki.
http://hadoop. apache. org/common/docs/r0 20. 2010.

[4] Vavilapalli, V. K.; et al. Apache hadoop yarn: Yet another resource
negotiator. Proceedings of the 4th annual Symposium on Cloud
Computing. ACM, 2013.

[5] Hadoop, Apache. Hadoop Archives Guide. The Apache Software
Foundation, http:// hadoop.apache.org/docs/current/hadoop-
yarn/hadoop-yarn-site/YARN.html (2019). Retrieved Oct. 15, 2019.

[6] Kaur, I. et al. Research Paper on Big Data and Hadoop. IJCST, 7(4),
2016, pp. 50-53.

[7] Dean, J. and Ghemawat, S. MapReduce: Simplified data processing on
large clusters. Proceedings of Operating Systems Design and
Implementation, 2004.

[8] Yang, H. et al. Map-reduce-merge: simplified relational data
processing on large clusters. Proceedings of the ACM SIGMOD
international conference on Management of data. ACM, 2007.

[9] Rohloff, K. and Schantz, R.E. High-performance, massively scalable
distributed systems using the MapReduce software framework: the
SHARD triple-store. Programming support innovations for emerging
distributed applications. ACM, 2010.

[10] Point, Tutorials. Retrieved Oct. 15, 2019 from Internet Site
https://www.tutorialspoint.com.html. Tutorials Point.

[11] Miner, D. and Radtka, Z. Hadoop with Python. O’Rilley Media. 2016.

[12] Log analysis https://en.wikipedia.org/wiki/Log_analysis

[13] Sayalee Narkhede and Tripti Baraskar - Hmr Log Analyzer: Analyze
Web Application Logs Over Hadoop MapReduce International Journal
of UbiComp (IJU), Vol.4, No.3, July 2013.

[14] “Python Fake Logs.” Internet: https://github.com/s4tori/fake“Python
Fake Logs.” Internet: https://github.com/s4tori/fake-logs.-logs.

