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Abstract— Pretty much every part of life now results in the 

generation of data. Logs are documentation of events or records 

of system activities and are created automatically through IT 

systems. Log data analysis is a process of making sense of these 

records. Log data often grows quickly and the conventional 

database solutions run short for dealing with a large volume of 

log files. Hadoop, having a wide area of applications for Big Data 

analysis, provides a solution for this problem. In this study, 

Hadoop was installed on two virtual machines. Log files 

generated by a Python script were analyzed in order to evaluate 

the system activities. The aim was to validate the importance of 

Hadoop in meeting the challenge of dealing with Big Data. The 

performed experiments show that analyzing logs with Hadoop 

MapReduce makes the data processing and detection of 

malfunctions and defects faster and simpler. 

Keywords— Hadoop, MapReduce, Big Data, log analysis, 

distributed file systems. 

I. INTRODUCTION 

The term “Big Data” is gaining more popularity every day. 
The first thing we should know about it is that it does not have 
a commonly held definition. Basically, as one can understand 
from its name, Big Data means a big amount of data. Sethy, 
R. [1] in his article defines "Big Data describes any massive 
volume of structured, semi-structured and unstructured data 
that are difficult to process using a traditional database 
system." 

 Researches show that data volumes are doubling every 
year. Although there is not a specific reason behind this rapid 
growth rate, the new data sources, contribute to that growth 
highly. Smartphones, tablet computers, sensors, and all other 
devices that can be connected to the internet generate a vast 
amount of data. Enterprises improve their technological 
infrastructures and adopt more powerful platforms, which 
play an important role in the growth rate of the data that is 
generated [2]. 

II. HADOOP

Hadoop is a collection of open-source utilities which 
allows the use of network to deal with the problems which 
include big amounts of data. Hadoop provides framework for 
distributed storage and framework for processing big data 
with MapReduce programing model. The core of Apache 
Hadoop framework contains the following parts: 

 Hadoop Common

 Hadoop Distributed File System (HDFS)

 Hadoop YARN

 Hadoop MapReduce

Hadoop common represent libraries and utilities which are 
needed by other Hadoop parts in order to operate. Hadoop 
distributed File System (HDSF) is a distributed file-system 
that stores data on commodity hardware, allowing very high 
bandwidth across the cluster. Hadoop YARN is a platform 
responsible for managing computing resources in clusters and 
uses them for scheduling users' applications. Lastly, Hadoop 
MapReduce is a programing model for big data processing in 
the cluster. 

Java is a programming language that is mostly used for 
writing MapReduce programs but Hadoop allows the use of 
any programming language to write MapReduce programs. 

To exploit the parallel processing that Hadoop gives, we 
have to express our query as a MapReduce job. After some 
local, little scope testing, we can have the option to run it on a 
cluster of machines. 

The Hadoop structure is demonstrated in Figure 1. 

Fig 1. Hadoop Structure 

A. Hadoop Distributed File System (HDFS) 

Hadoop Distributed File system is one of the most reliable 
storage systems designed to store a smaller number of large 
files rather than a greater number of small files. Among many 
of the features HDFS provides, the fault-tolerant storage layer 
can be mentioned as one of the most important features. 
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Replication of data in the Hadoop file system helps the user to 
attain this feature. Even in situations where hardware failure 
happens, the data reliability is still high [3]. 

Apache Yarn, introduced in Hadoop 2.x, is the resource 
management layer of Hadoop, which is also used for job 
scheduling and data operating system. It allows different data 
processing engines to run and process data stored in HDFS. 
Some of these processing engines are graph processing, 
interactive processing, stream processing, and batch 
processing. Data processing platform Yarn has the 
functionality named MapReduce, which empowers Hadoop 
by allowing processing numerous different frameworks on the 
same hardware where Hadoop is deployed [4]. 

HDFS was developed using distributed file system design 
and is designed using low-cost hardware. It is more fault-
tolerant than other distributed systems. HDFS is capable of 
holding larger amounts of data providing easy access and 
parallel processing. In HDFS files are stored across multiple 
machines in order to prevent possible data losses in case of 
system failure [3]. Features of HDFS are: distributed storage 
and processing, command interface, checking the status of 
clusters, streaming access to the file system, file permission, 
and authentication. 

 Distributed storage and processing 

 Command interface to interact with HDFS 

 Checking the status of cluster easily 

 Streaming access to file system data 

 File permissions and authentication 

1) HDFS Architecture 

HDFS follows the master-slave architecture. It has 

elements such as namenode, datanode, and blocks, where the 

built-in servers of the first two elements enable users to easily 

check the status of the cluster. Similarly, they are commodity 

hardware [point]. In Figure 2 the architecture of the Hadoop 

file system is demonstrated. 

 
Fig 2. Architecture of a Hadoop File System 

 Namenode 

 The namenode, containing GNU/Linux operating 

system and the namenode software, can act as the master 

server running on commodity hardware. Renaming and 

opening/closing files/directories are executed in this element. 

It also manages the file system and regulates clients’ access 

to files. 

 Datanode 

Similar to namenode, the datanode too, contains the 

GNU/Linux operating system and datanode software. For 

every node in a cluster, there exists a datanode, which is able 

to manage the data storage of the system. Depending on the 

instructions of the namenode, datanode performs block 

creation, block deletion, and block replication. It also 

performs read/write operations on the file system when 

requested by a client. 

 Block 

. Usually, the user data are stored in files such that a file 

in a file system is divided into segments and then are stored 

in individual data nodes. Those file segments are called 

blocks. A block is the minimum amount of data that HDFS 

can read/write. The block size can be increased if needed but 

the normal size is 64MB. 

B. Apache Hadoop Yarn 

       To create a split between Resource Manager (RM) and 

Application Master (AM), YARN separates the functions of 

resource management and job scheduling into separate 

daemons. An application can be an individual job or a DAG 

of jobs. 

 ResourceManager (RM) 

Resource Manager (RM) together with the Node 

Manager (NM) comprise the data-computation framework. 

The RM adjudicates the resources in the system and NM is 

responsible for containers and monitoring resource usage. In 

other words, RM is the ultimate authority and NM is the 

framework agent. RM has two main components known as 

Scheduler and Application Manager. 

 Scheduler 

       Scheduler controls the allocation of resources to the 

several running applications. It performs the scheduling 

function depending on the resource requirements of 

applications, but it does not take any responsibility for 

performing monitoring, tracking the status of applications or 

application or hardware failures.   

 ApplicationsManager 

      Applications Manager: responsible for restarting the AM 

container in case of a failure. It also accepts job submissions. 

 ApplicationMaster (AM) 

       The AM is responsible for requesting resources from the 

RM and then executing and monitoring the tasks. It works 

together with NM when executing the tasks. 

       The main idea behind using YARN on Hadoop is the 

notion of resource reservation via the Reservation System. 

The Reservation System tracks the resources, performs 

admission control for reservations, and reserves resources to 

ensure the execution of important jobs [4].  

       YARN supports the notion of Federation via the YARN 

Federation feature. The idea behind this is to scale Yarn up to 

very large amounts of nodes by wiring YARN clusters and 

sub-clusters. The Federation feature makes this transparent 

wiring of clusters appear as a single big cluster [5]. 

III. THE ROLE OF MAPREDUCE IN HANDLING BIG DATA 

Big Data means "big power" when handled efficiently. It 
can give new aspects to the enterprises, like which strategy 
will increase the profitability, which customers buy which 
products, the current situation of the company versus the 
situation of the competitors, and so on.   

As the data comes from different sources and different 
structures it is important to categorize it with respect to some 
characteristics of the data. The most important and the most 
known characteristics of Big Data are known as the "3Vs of 
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Big Data" where the Vs stands for volume, variety, and 
velocity. Volume refers to the amount of data, variety refers 
to the type of data, i.e. text, image, video, etc. and velocity 
refers to the speed at which the data comes from different 
sources [6].  

 Big Data comes with its own set of problems that need to 
be resolved. Processing power, storage, data issues, and cost 
are the most important problems. The old techniques for 
working with or analyzing information are not enough to deal 
with Big Data. Therefore, new technologies are needed and 
this is where MapReduce comes into the picture [2]. 

A. MapReduce 

MapReduce is a programming model that is used for 
accessing and processing big data stored in HDFS. Programs 
written in MapReduce are executed on a distributed system 
where big data is split into smaller chunks of data and are 
executed in parallel [7]. MapReduce has two functionalities, 
Map () and Reduce (). This model has been used in Google's 
search index, machine learning, and statistical analysis [8]. 
Implementation of MapReduce is highly scalable and easy to 
use. The run-time system allows programmers with no prior 
knowledge or experience with parallel processing to utilize the 
resources of distributed systems easily, by handling details 
like partitioning the inputs, scheduling the program's 
execution, handling failures, and managing inter-machine 
communication [7, 9].  

 Although it is impossible to prevent failures, the objective 
is to minimize the probability of failure to a level that will not 
harm the overall process. Two methods that would help to 
increase the "fault tolerance" in Big Data are the following [6]: 

 First divide the whole computation into smaller tasks 
and then assign each task to a different node. 

 Assign a node to observe if the other nodes are 
working properly. In case a node fails to complete its 
task, the task is restarted. But this may cause a 
complication in the process if some tasks are 
recursive. 

MapReduce is one of the core building blocks of 
processing in the Hadoop framework. Hadoop uses the 
MapReduce algorithm to run the applications in parallel. It 
provides the necessary solution to keep the process going 
since it can survive failures without losing data. In 2004 
Google published about MapReduce technology [7]. 
MapReduce comprises of two distinct tasks: Map and Reduce. 
Mapping is the first phase and Reducing happens after the 
Mapping phase is completed. In Map phase data is processed 
and key-value pairs are produced. This is known as the map 
job. Then the produced key-value pairs are fed into the 
Reducer. After collecting all the key-value pairs from all of 
the map jobs the Reducer groups the pairs into a smaller set of 
key-value pairs, producing the final output [7, 8]. 

 
Fig 3. How does MapReduce work? 

B. Algorithm of MapReduce  

MapReduce program has three stages of executing: map, 
shuffle, and reduce. 

 Map stage: at this stage, the map job processes the 
input data which is in the form of a file or directory. 
As an output of the map job several small chunks of 
data are produced. 

 Shuffle stage: at this stage, the output of the map 

stage is accepted and the relevant records are 

consolidated. 

 Reduce stage: reduce stage acts together with the 

shuffle stage. The reducer processes the data that 

comes from the map stage and produces a new output 

which is then stored in the Hadoop file system. 
 During the process, a task from Map and Reduce phases 
are sent to the appropriate servers in the cluster. All the data 
passing details like issuing tasks, verifying task completion, 
copying data between nodes, are managed by the MapReduce 
framework. Because the computing is performed on nodes 
using the data from local disks the network traffic is reduced 
significantly. After the tasks are completed the results are sent 
back to the Hadoop server [10]. 

C. MapReduce with Python 

 ‘mrjob’ is a Python library for MapReduce for writing and 
running Hadoop streaming jobs. It is created by Yelp. When a 
MapReduce job is written using ‘mrjob’, it can be tested 
locally and run on a Hadoop cluster or in the cloud. Using 
‘mrjob’ for writing MapReduce applications has many 
advantages. Some of them are: 

 It is a dynamically developing framework. 

 It has extensive documentation. 

 Installing Hadoop is not enforced. Applications 
written using ‘mrjob’ can be executed and tested 
without installing Hadoop. 

 It allows the MapReduce applications to be written 
in a single class rather than writing separate 
programs for Map and Reduce phases. 

Although it provides a great solution, 'mrjob' has its 
disadvantages. The most important disadvantage is that it does 
not provide the level of access to Hadoop that other APIs 
provide. This is because it is a simplified library [11]. 

IV. LOG ANALYZER WITH HADOOP 

Log analysis is both art and science which aims to make 
sense out of computer-generated records. These records are 
called log or audit trail records. The process of creating these 
records is known as data logging [12]. Some of the most 
important reasons for performing log analysis are: 

Understanding user behavior 

 System troubleshooting 

 Proper resource allocation 

 Improved business operations 

 Improved security 

 Achieve compliance 



Journal of Emerging Computer Technologies 
Risteski et al. 

Volume:1, No:1, Year: 2021, Pages: 1-5, June 2021, Journal of Emerging Computer Technologies 

4 

Data centers generate thousands of terabytes or petabytes 
of log files every single day. It is very challenging to store and 
analyze these data not only because of its large volume but 
also because of the different structure of log files. Due to not 
being able to deal with a large volume of log files efficiently, 
conventional database solutions run short for the needs in log 
analysis. As a result of the comparison of SQL DBMS and 
Hadoop MapReduce in [13], Hadoop MapReduce 
overperforms DBMS in the means of tuning up with the task 
and loading data. As it can be seen from this result, with the 
unprecedented increase in the data generated traditional 
methods fall short with providing a solution for data analysis. 
This is, exactly, the point where the new technologies stepped 
in [8]. Hadoop MapReduce has a wide area of applications for 
Big Data analysis [3],[9],[11]. The true power of Hadoop lies 
in its ability to scale up to a great number of computers, where 
each computer has several processor cores, by connecting 
commodity computers to work in parallel. This plays an 
important role in log analysis as it can benefit thousands of 
nodes which will store multiple blocks of log files.   

In this paper, we propose an idea on how Hadoop can be 
used to analyze web server logs, in our case Nginx access log. 
Web server access logs are generated by the web servers all 
the time, recording all accesses on the hosted web pages. This 
means that the access logs can be very big. The web access 
log contains information about time, IP addresses, browser 
type, etc. All of this information is important for the system 
administrators as it provides information about system usage, 
security, and system troubleshooting.  

This idea is proposed for analyzing one kind of logs only, 
but Hadoop can be used in every situation where big log files 
are generated, such as system logs, logs from some business 
application, etc.  

The real-world usage (practical usage) of this system can 
be implementing it as a base of a larger system used by many 
users for log analyzing. 

A. Environment Setup 

We have installed Hadoop for demonstrating purpose on 

two virtual machines hosted on Digitalocean. Each virtual 

machine has 2 cores CPU and 8GB of RAM memory 

(installing is explained in details in Installing Hadoop 

section) with installed Ubuntu 16.04. Also, for testing 

purpose we have installed Hadoop on one local virtual 

machine with 1 core CPU and 7GB of RAM memory on 

hosted hypervisor VMware Workstation Pro 15 using 

Bitnami Hadoop Stack image. In this project the log 

generated from Python Fake Logs script is used [14]. 

V. RESULTS 

Our aim was to validate the role and importance of Hadoop 
in meeting the challenge of dealing with Big Data, by an 
analysis of log files in order to evaluate the system activities. 
We benefitted from Hadoop's ability to scale up to as many 
computers as needed. Firstly, log files are broken up into 
blocks with MapReduce class created with mrjob python 
library (dividing into blocks is explained in section 3.1). 
Blocks are then distributed over the nodes in a Hadoop cluster. 
With parallel computation, the job is divided into a number of 
tasks, which in return improves the performance. In our log 
analysis, we used Python's 'mrjob' library. 

We use a dummy log file only for testing. Our log file is 
the Nginx access log file. The log file contains information 
about: 

 visitor's IP address, 

 date and time of the access, 

 visited page, 

 type of request,  

 type of the user’s web browser, 

 type of the user’s operating system. 

In our case, two reports are extracted from the Nginx 
access file as an example. These two reports are only an 
example of what can be achieved. The following charts 
demonstrate the results of our experiments. In Figure 4 the 
number of visits is shown based on the hours the visitor visited 
the websites. We can see that the number of visits is the 
highest at 20:00 – 21:00. The number of visits is the lowest at 
10:00 – 11:00. 

Fig 4. Number of visits by hour 

The second report analyzes which are the most visited 
pages. It is possible to make many other reports depending on 
the user's needs. For example, the most used browser, most 
used operating system, detecting suspicious behavior, etc. 

In Figure 5 the distribution of the visits is displayed with 
regard to the most visited 10 sites. 

Fig 5. Top 10 most visited sites 

VI. DISCUSSION 

Log data grows very quickly as they are generated at a 
record rate. Processing power, storage, and cost are some of 
the biggest challenges that come with this Big Data. Using 
conventional methods to deal with such data is too costly in 
terms of both time and money. Hadoop provides frameworks 
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for distributed storage and processing for Big Data, which 
makes it possible to use a network for processing and 
analyzing big amounts of data. In this way, companies save 
time and money when trying to diagnose problems, solve 
issues, or obtain the knowledge they wouldn't be able to obtain 
otherwise. The ability to store as well as distribute large 
datasets across numerous servers in a cost-effective way 
makes Hadoop very advantageous with regard to the 
traditional relational database management systems. 
Moreover, Hadoop MapReduce processes terabytes of data in 
minutes and by executing tasks in parallel shortens the 
processing of data by a considerable amount. 

VII. CONCLUSION 

Log analysis is important for businesses and system 

administrators in many aspects, as they give information 

about malfunctions, defects, security-related issues, and so 

on. On the other hand, being generated constantly provides a 

good example of Big Data, therefore a good example of our 

experiments. Our analysis shows that analyzing logs with 

Hadoop MapReduce makes the detection of malfunctions, 

defects, and so on faster and simpler. The results also show 

that there is not a big difference if we run the code in a real 

cluster or in the test environment. 
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